On classification of groups generated by 3-state automata over a~2-letter alphabet
Algebra and discrete mathematics, no. 1 (2008), pp. 1-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the class of groups generated by 3-state automata over a 2-letter alphabet has no more than 122 members. For each group in the class we provide some basic information, such as short relators, a few initial values of the growth function, a few initial values of the sizes of the quotients by level stabilizers (congruence quotients), and hystogram of the spectrum of the adjacency operator of the Schreier graph of the action on level 9. In most cases we provide more information, such as whether the group is contracting, self-replicating, or (weakly) branch group, and exhibit elements of infinite order (we show that no group in the class is an infinite torsion group). A GAP package, written by Muntyan and Savchuk, was used to perform some necessary calculations. For some of the examples, we establish that they are (virtually) iterated monodromy groups of post-critically finite rational functions, in which cases we describe the functions and the limit spaces. There are exactly 6 finite groups in the class (of order no greater than 16), two free abelian groups (of rank 1 and 2), and only one free nonabelian group (of rank 3). The other examples in the class range from familiar (some virtually abelian groups, lamplighter group, Baumslag–Solitar groups $BS(1,\pm3)$, and a free product $C_2\ast C_2\ast C_2$) to enticing (Basilica group and a few other iterated monodromy groups).
Keywords: automata groups, self-similar groups, branch groups.
@article{ADM_2008_1_a0,
     author = {Ievgen Bondarenko and Rostislav Grigorchuk and Rostyslav Kravchenko and Yevgen Muntyan and Volodymyr Nekrashevych and Dmytro Savchuk and Zoran \v{S}un{\'\i}c},
     title = {On classification of groups generated by 3-state automata over a~2-letter alphabet},
     journal = {Algebra and discrete mathematics},
     pages = {1--163},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2008_1_a0/}
}
TY  - JOUR
AU  - Ievgen Bondarenko
AU  - Rostislav Grigorchuk
AU  - Rostyslav Kravchenko
AU  - Yevgen Muntyan
AU  - Volodymyr Nekrashevych
AU  - Dmytro Savchuk
AU  - Zoran Šuníc
TI  - On classification of groups generated by 3-state automata over a~2-letter alphabet
JO  - Algebra and discrete mathematics
PY  - 2008
SP  - 1
EP  - 163
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2008_1_a0/
LA  - en
ID  - ADM_2008_1_a0
ER  - 
%0 Journal Article
%A Ievgen Bondarenko
%A Rostislav Grigorchuk
%A Rostyslav Kravchenko
%A Yevgen Muntyan
%A Volodymyr Nekrashevych
%A Dmytro Savchuk
%A Zoran Šuníc
%T On classification of groups generated by 3-state automata over a~2-letter alphabet
%J Algebra and discrete mathematics
%D 2008
%P 1-163
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2008_1_a0/
%G en
%F ADM_2008_1_a0
Ievgen Bondarenko; Rostislav Grigorchuk; Rostyslav Kravchenko; Yevgen Muntyan; Volodymyr Nekrashevych; Dmytro Savchuk; Zoran Šuníc. On classification of groups generated by 3-state automata over a~2-letter alphabet. Algebra and discrete mathematics, no. 1 (2008), pp. 1-163. http://geodesic.mathdoc.fr/item/ADM_2008_1_a0/