On quantales of preradical Bland filters and differential preradical filters
Algebra and discrete mathematics, no. 4 (2007), pp. 108-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the set of all Bland preradical filters over an arbitrary differential ring form a quantale with respect to meets where the role of multiplication is played by the usual Gabriel pro-duct of filters. A subset of a differential pretorsion theory is a subquantale of this quantale.
Keywords: differential ring, differential preradical filter, differential preradical Bland filter, differential torsion theory, Bland torsion theory.
Mots-clés : quantale
@article{ADM_2007_4_a9,
     author = {Ivanna Melnyk},
     title = {On quantales of preradical {Bland} filters and differential preradical filters},
     journal = {Algebra and discrete mathematics},
     pages = {108--122},
     publisher = {mathdoc},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2007_4_a9/}
}
TY  - JOUR
AU  - Ivanna Melnyk
TI  - On quantales of preradical Bland filters and differential preradical filters
JO  - Algebra and discrete mathematics
PY  - 2007
SP  - 108
EP  - 122
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2007_4_a9/
LA  - en
ID  - ADM_2007_4_a9
ER  - 
%0 Journal Article
%A Ivanna Melnyk
%T On quantales of preradical Bland filters and differential preradical filters
%J Algebra and discrete mathematics
%D 2007
%P 108-122
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2007_4_a9/
%G en
%F ADM_2007_4_a9
Ivanna Melnyk. On quantales of preradical Bland filters and differential preradical filters. Algebra and discrete mathematics, no. 4 (2007), pp. 108-122. http://geodesic.mathdoc.fr/item/ADM_2007_4_a9/