On one-sided Lie nilpotent ideals of associative rings
Algebra and discrete mathematics, no. 4 (2007), pp. 102-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a Lie nilpotent one-sided ideal of an associative ring $R$ is contained in a Lie solvable two-sided ideal of $R$. An estimation of derived length of such Lie solvable ideal is obtained depending on the class of Lie nilpotency of the Lie nilpotent one-sided ideal of $R$. One-sided Lie nilpotent ideals contained in ideals generated by commutators of the form $[\ldots[ [r_1,\,r_{2}],\ldots],\,r_{n-1}],\,r_{n}]$ are also studied.
Keywords: associative ring, one-sided ideal, Lie nilpotent ideal, derived length.
@article{ADM_2007_4_a8,
     author = {Victoriya S. Luchko and Anatoliy P. Petravchuk},
     title = {On one-sided {Lie} nilpotent ideals of associative rings},
     journal = {Algebra and discrete mathematics},
     pages = {102--107},
     publisher = {mathdoc},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2007_4_a8/}
}
TY  - JOUR
AU  - Victoriya S. Luchko
AU  - Anatoliy P. Petravchuk
TI  - On one-sided Lie nilpotent ideals of associative rings
JO  - Algebra and discrete mathematics
PY  - 2007
SP  - 102
EP  - 107
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2007_4_a8/
LA  - en
ID  - ADM_2007_4_a8
ER  - 
%0 Journal Article
%A Victoriya S. Luchko
%A Anatoliy P. Petravchuk
%T On one-sided Lie nilpotent ideals of associative rings
%J Algebra and discrete mathematics
%D 2007
%P 102-107
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2007_4_a8/
%G en
%F ADM_2007_4_a8
Victoriya S. Luchko; Anatoliy P. Petravchuk. On one-sided Lie nilpotent ideals of associative rings. Algebra and discrete mathematics, no. 4 (2007), pp. 102-107. http://geodesic.mathdoc.fr/item/ADM_2007_4_a8/