Serial piecewise domains
Algebra and discrete mathematics, no. 4 (2007), pp. 59-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

A ring $A$ is called a piecewise domain with respect to the complete set of idempotents $\{e_1, e_2,\ldots, e_m\}$ if every nonzero homomorphism $e_iA \rightarrow e_jA$ is a monomorphism. In this paper we study the rings for which conditions of being piecewise domain and being hereditary (or semihereditary) rings are equivalent. We prove that a serial right Noetherian ring is a piecewise domain if and only if it is right hereditary. And we prove that a serial ring with right Noetherian diagonal is a piecewise domain if and only if it is semihereditary.
Keywords: hereditary ring, semihereditary ring, serial ring, Noetherian diagonal, prime radical
Mots-clés : piecewise domain, prime quiver.
@article{ADM_2007_4_a5,
     author = {Nadiya Gubareni and Marina Khibina},
     title = {Serial piecewise domains},
     journal = {Algebra and discrete mathematics},
     pages = {59--72},
     publisher = {mathdoc},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2007_4_a5/}
}
TY  - JOUR
AU  - Nadiya Gubareni
AU  - Marina Khibina
TI  - Serial piecewise domains
JO  - Algebra and discrete mathematics
PY  - 2007
SP  - 59
EP  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2007_4_a5/
LA  - en
ID  - ADM_2007_4_a5
ER  - 
%0 Journal Article
%A Nadiya Gubareni
%A Marina Khibina
%T Serial piecewise domains
%J Algebra and discrete mathematics
%D 2007
%P 59-72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2007_4_a5/
%G en
%F ADM_2007_4_a5
Nadiya Gubareni; Marina Khibina. Serial piecewise domains. Algebra and discrete mathematics, no. 4 (2007), pp. 59-72. http://geodesic.mathdoc.fr/item/ADM_2007_4_a5/