Exponent matrices and topological equivalence of maps
Algebra and discrete mathematics, no. 4 (2007), pp. 45-58
Voir la notice de l'article provenant de la source Math-Net.Ru
Conjugate classes of continuous maps of the interval $[0,\,1]$ into itself, whose iterations form a finite group are described. For each of possible groups of iterations one to one correspondence between conjugate classes of maps and equivalent classes of $(0,\,1)$-exponent matrices of special form is constructed. Easy way of finding the quiver of the map in terms of the set of its extrema is found.
Keywords:
exponent matrix, finite orbits, topological equivalence.
@article{ADM_2007_4_a4,
author = {Volodymyr Fedorenko and Volodymyr Kirichenko and Makar Plakhotnyk},
title = {Exponent matrices and topological equivalence of maps},
journal = {Algebra and discrete mathematics},
pages = {45--58},
publisher = {mathdoc},
number = {4},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2007_4_a4/}
}
TY - JOUR AU - Volodymyr Fedorenko AU - Volodymyr Kirichenko AU - Makar Plakhotnyk TI - Exponent matrices and topological equivalence of maps JO - Algebra and discrete mathematics PY - 2007 SP - 45 EP - 58 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2007_4_a4/ LA - en ID - ADM_2007_4_a4 ER -
Volodymyr Fedorenko; Volodymyr Kirichenko; Makar Plakhotnyk. Exponent matrices and topological equivalence of maps. Algebra and discrete mathematics, no. 4 (2007), pp. 45-58. http://geodesic.mathdoc.fr/item/ADM_2007_4_a4/