Exponent matrices and topological equivalence of maps
Algebra and discrete mathematics, no. 4 (2007), pp. 45-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conjugate classes of continuous maps of the interval $[0,\,1]$ into itself, whose iterations form a finite group are described. For each of possible groups of iterations one to one correspondence between conjugate classes of maps and equivalent classes of $(0,\,1)$-exponent matrices of special form is constructed. Easy way of finding the quiver of the map in terms of the set of its extrema is found.
Keywords: exponent matrix, finite orbits, topological equivalence.
@article{ADM_2007_4_a4,
     author = {Volodymyr Fedorenko and Volodymyr Kirichenko and Makar Plakhotnyk},
     title = {Exponent matrices and topological equivalence of maps},
     journal = {Algebra and discrete mathematics},
     pages = {45--58},
     publisher = {mathdoc},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2007_4_a4/}
}
TY  - JOUR
AU  - Volodymyr Fedorenko
AU  - Volodymyr Kirichenko
AU  - Makar Plakhotnyk
TI  - Exponent matrices and topological equivalence of maps
JO  - Algebra and discrete mathematics
PY  - 2007
SP  - 45
EP  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2007_4_a4/
LA  - en
ID  - ADM_2007_4_a4
ER  - 
%0 Journal Article
%A Volodymyr Fedorenko
%A Volodymyr Kirichenko
%A Makar Plakhotnyk
%T Exponent matrices and topological equivalence of maps
%J Algebra and discrete mathematics
%D 2007
%P 45-58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2007_4_a4/
%G en
%F ADM_2007_4_a4
Volodymyr Fedorenko; Volodymyr Kirichenko; Makar Plakhotnyk. Exponent matrices and topological equivalence of maps. Algebra and discrete mathematics, no. 4 (2007), pp. 45-58. http://geodesic.mathdoc.fr/item/ADM_2007_4_a4/