On linear algebraic groups over pseudoglobal fields
Algebra and discrete mathematics, no. 4 (2007), pp. 11-22
Voir la notice de l'article provenant de la source Math-Net.Ru
Some properties of $R$–equivalence and weak approximation in linear algebraic group over global field are generalized to the case of linear algebraic group over an algebraic function field in one variable with pseudofinite constant field.
Keywords:
linear algebraic group, Hasse principle, weak approximation, Tate–Shafarevich group, algebraic function field.
@article{ADM_2007_4_a2,
author = {Vasyl Andriychuk},
title = {On linear algebraic groups over pseudoglobal fields},
journal = {Algebra and discrete mathematics},
pages = {11--22},
publisher = {mathdoc},
number = {4},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2007_4_a2/}
}
Vasyl Andriychuk. On linear algebraic groups over pseudoglobal fields. Algebra and discrete mathematics, no. 4 (2007), pp. 11-22. http://geodesic.mathdoc.fr/item/ADM_2007_4_a2/