$F$--semigroups
Algebra and discrete mathematics, no. 3 (2007), pp. 67-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

A semigroup $S$ is called $F$- semigroup if there exists a group-congruence $\rho$ on $S$ such that every $\rho$-class contains a greatest element with respect to the natural partial order $\leq_S$ of $S$ (see [8]). This generalizes the concept of $F$-inverse semigroups introduced by V. Wagner [12] and investigated in [7]. Five different characterizations of general $F$-semigroups $S$ are given: by means of residuals, by special principal anticones, by properties of the set of idempotents, by the maximal elements in $(S,\leq_S)$ and finally, an axiomatic one using an additional unary operation. Also $F$-semigroups in special classes are considered; in particular, inflations of semigroups and strong semilattices of monoids are studied.
Keywords: natural partial order, residual
Mots-clés : maximal elements, group congruence, anticone.
@article{ADM_2007_3_a8,
     author = {Emilia Giraldes and Paula Marques-Smith and Heinz Mitsch},
     title = {$F$--semigroups},
     journal = {Algebra and discrete mathematics},
     pages = {67--86},
     publisher = {mathdoc},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2007_3_a8/}
}
TY  - JOUR
AU  - Emilia Giraldes
AU  - Paula Marques-Smith
AU  - Heinz Mitsch
TI  - $F$--semigroups
JO  - Algebra and discrete mathematics
PY  - 2007
SP  - 67
EP  - 86
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2007_3_a8/
LA  - en
ID  - ADM_2007_3_a8
ER  - 
%0 Journal Article
%A Emilia Giraldes
%A Paula Marques-Smith
%A Heinz Mitsch
%T $F$--semigroups
%J Algebra and discrete mathematics
%D 2007
%P 67-86
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2007_3_a8/
%G en
%F ADM_2007_3_a8
Emilia Giraldes; Paula Marques-Smith; Heinz Mitsch. $F$--semigroups. Algebra and discrete mathematics, no. 3 (2007), pp. 67-86. http://geodesic.mathdoc.fr/item/ADM_2007_3_a8/