Groups whose non-normal subgroups have small commutator subgroup
Algebra and discrete mathematics, no. 3 (2007), pp. 46-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of groups whose non-normal subgroups have a finite commutator subgroup is investigated. In particular, it is proved that if $k$ is a positive integer and $G$ is a locally graded group in which every non-normal subgroup has finite commutator subgroup of order at most $k$, then the commutator subgroup of $G$ is finite. Moreover, groups with finitely many normalizers of subgroups with large commutator subgroup are studied.
Keywords: normal subgroup, commutator subgroup.
@article{ADM_2007_3_a6,
     author = {M. De Falco and F. de Giovanni and C. Musella},
     title = {Groups whose non-normal subgroups have small commutator subgroup},
     journal = {Algebra and discrete mathematics},
     pages = {46--58},
     publisher = {mathdoc},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2007_3_a6/}
}
TY  - JOUR
AU  - M. De Falco
AU  - F. de Giovanni
AU  - C. Musella
TI  - Groups whose non-normal subgroups have small commutator subgroup
JO  - Algebra and discrete mathematics
PY  - 2007
SP  - 46
EP  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2007_3_a6/
LA  - en
ID  - ADM_2007_3_a6
ER  - 
%0 Journal Article
%A M. De Falco
%A F. de Giovanni
%A C. Musella
%T Groups whose non-normal subgroups have small commutator subgroup
%J Algebra and discrete mathematics
%D 2007
%P 46-58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2007_3_a6/
%G en
%F ADM_2007_3_a6
M. De Falco; F. de Giovanni; C. Musella. Groups whose non-normal subgroups have small commutator subgroup. Algebra and discrete mathematics, no. 3 (2007), pp. 46-58. http://geodesic.mathdoc.fr/item/ADM_2007_3_a6/