Nonstandard additively finite triangulated categories of Calab–Yau dimension one in characteristic 3
Algebra and discrete mathematics, no. 3 (2007), pp. 27-37
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that there exist nonstandard $K$-linear triangulated categories with finitely many indecomposable objects and Calab–Yau dimension one over an arbitrary algebraically closed field $K$ of characteristic 3, using deformed preprojective algebras of generalized Dynkin type.
Keywords:
triangulated category, Calabi–Yau category, preprojective algebra.
@article{ADM_2007_3_a4,
author = {Jerzy Bia{\l}kowski and Andrzej Skowronski},
title = {Nonstandard additively finite triangulated categories of {Calab{\textendash}Yau} dimension one in characteristic~3},
journal = {Algebra and discrete mathematics},
pages = {27--37},
year = {2007},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2007_3_a4/}
}
TY - JOUR AU - Jerzy Białkowski AU - Andrzej Skowronski TI - Nonstandard additively finite triangulated categories of Calab–Yau dimension one in characteristic 3 JO - Algebra and discrete mathematics PY - 2007 SP - 27 EP - 37 IS - 3 UR - http://geodesic.mathdoc.fr/item/ADM_2007_3_a4/ LA - en ID - ADM_2007_3_a4 ER -
Jerzy Białkowski; Andrzej Skowronski. Nonstandard additively finite triangulated categories of Calab–Yau dimension one in characteristic 3. Algebra and discrete mathematics, no. 3 (2007), pp. 27-37. http://geodesic.mathdoc.fr/item/ADM_2007_3_a4/