Multi-solid varieties and Mh-transducers
Algebra and discrete mathematics, no. 3 (2007), pp. 113-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the concepts of colored terms and multi-hypersubstitutions. If $t\in W_\tau(X)$ is a term of type $\tau$, then any mapping $\alpha_t:Pos^\mathcal F(t)\to\mathbb N$ of the non-variable positions of a term into the set of natural numbers is called a coloration of $t$. The set $W_\tau^c(X)$ of colored terms consists of all pairs $\langle t,\alpha_t\rangle$. Hypersubstitutions are maps which assign to each operation symbol a term with the same arity. If $M$ is a monoid of hypersubstitutions then any sequence $\rho= (\sigma_1,\sigma_2,\ldots)$ is a mapping $\rho:\mathbb N\to M$, called a multi-hypersubstitution over $M$. An identity $t\approx s$, satisfied in a variety $V$ is an $M$-multi-hyperidentity if its images $\rho[t\approx s]$ are also satisfied in $V$ for all $\rho\in M$. A variety $V$ is $M$-multi-solid, if all its identities are $M-$multi-hyperidentities. We prove a series of inclusions and equations concerning $M$-multi-solid varieties. Finally we give an automata realization of multi-hypersubstitutions and colored terms.
Keywords: Colored term; multi-hypersubstitution; deduction of identities.
@article{ADM_2007_3_a11,
     author = {Slavcho Shtrakov},
     title = {Multi-solid varieties and {Mh-transducers}},
     journal = {Algebra and discrete mathematics},
     pages = {113--131},
     publisher = {mathdoc},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2007_3_a11/}
}
TY  - JOUR
AU  - Slavcho Shtrakov
TI  - Multi-solid varieties and Mh-transducers
JO  - Algebra and discrete mathematics
PY  - 2007
SP  - 113
EP  - 131
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2007_3_a11/
LA  - en
ID  - ADM_2007_3_a11
ER  - 
%0 Journal Article
%A Slavcho Shtrakov
%T Multi-solid varieties and Mh-transducers
%J Algebra and discrete mathematics
%D 2007
%P 113-131
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2007_3_a11/
%G en
%F ADM_2007_3_a11
Slavcho Shtrakov. Multi-solid varieties and Mh-transducers. Algebra and discrete mathematics, no. 3 (2007), pp. 113-131. http://geodesic.mathdoc.fr/item/ADM_2007_3_a11/