Free products of finite groups acting on regular rooted trees
Algebra and discrete mathematics, no. 2 (2007), pp. 91-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let finite number of finite groups be given. Let $n$ be the largest order of their composition factors. We prove explicitly that the group of finite state automorphisms of rooted $n$-tree contains subgroups isomorphic to the free product of given groups.
@article{ADM_2007_2_a7,
     author = {C. K. Gupta and N. D. Gupta and A. S. Oliynyk},
     title = {Free products of finite groups acting on regular rooted trees},
     journal = {Algebra and discrete mathematics},
     pages = {91--103},
     publisher = {mathdoc},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2007_2_a7/}
}
TY  - JOUR
AU  - C. K. Gupta
AU  - N. D. Gupta
AU  - A. S. Oliynyk
TI  - Free products of finite groups acting on regular rooted trees
JO  - Algebra and discrete mathematics
PY  - 2007
SP  - 91
EP  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2007_2_a7/
LA  - en
ID  - ADM_2007_2_a7
ER  - 
%0 Journal Article
%A C. K. Gupta
%A N. D. Gupta
%A A. S. Oliynyk
%T Free products of finite groups acting on regular rooted trees
%J Algebra and discrete mathematics
%D 2007
%P 91-103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2007_2_a7/
%G en
%F ADM_2007_2_a7
C. K. Gupta; N. D. Gupta; A. S. Oliynyk. Free products of finite groups acting on regular rooted trees. Algebra and discrete mathematics, no. 2 (2007), pp. 91-103. http://geodesic.mathdoc.fr/item/ADM_2007_2_a7/