Self-similar groups and finite Gelfand pairs
Algebra and discrete mathematics, no. 2 (2007), pp. 54-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Basilica group $B$, the iterated monodromy group $I$ of the complex polynomial $z^2+i$ and the Hanoi Towers group $H^{(3)}$. The first two groups act on the binary rooted tree, the third one on the ternary rooted tree. We prove that the action of $B$$I$ and $H^{(3)}$ on each level is 2-points homogeneous with respect to the ultrametric distance. This gives rise to symmetric Gelfand pairs: we then compute the corresponding spherical functions. In the case of $B$ and $H^{(3)}$ this result can also be obtained by using the strong property that the rigid stabilizers of the vertices of the first level of the tree act spherically transitively on the respective subtrees. On the other hand, this property does not hold in the case of $I$.
Keywords: Rooted $q-$ary tree, ultrametric space, labelling, rigid vertex stabilizer, 2-points homogeneous action, Gelfand pairs, spherical functions.
Mots-clés : fractal group
@article{ADM_2007_2_a5,
     author = {Daniele D'Angeli and Alfredo Donno},
     title = {Self-similar groups and finite {Gelfand} pairs},
     journal = {Algebra and discrete mathematics},
     pages = {54--69},
     publisher = {mathdoc},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2007_2_a5/}
}
TY  - JOUR
AU  - Daniele D'Angeli
AU  - Alfredo Donno
TI  - Self-similar groups and finite Gelfand pairs
JO  - Algebra and discrete mathematics
PY  - 2007
SP  - 54
EP  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2007_2_a5/
LA  - en
ID  - ADM_2007_2_a5
ER  - 
%0 Journal Article
%A Daniele D'Angeli
%A Alfredo Donno
%T Self-similar groups and finite Gelfand pairs
%J Algebra and discrete mathematics
%D 2007
%P 54-69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2007_2_a5/
%G en
%F ADM_2007_2_a5
Daniele D'Angeli; Alfredo Donno. Self-similar groups and finite Gelfand pairs. Algebra and discrete mathematics, no. 2 (2007), pp. 54-69. http://geodesic.mathdoc.fr/item/ADM_2007_2_a5/