Integral group ring of the McLaughlin simple group
Algebra and discrete mathematics, no. 2 (2007), pp. 43-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Zassenhaus conjecture for the normalized unit group of the integral group ring of the McLaughlin sporadic group $\mathsf{McL}$. As a consequence, we confirm for this group the Kimmerle's conjecture on prime graphs.
Keywords: Kimmerle conjecture, integral group ring.
Mots-clés : Zassenhaus conjecture, torsion unit, partial augmentation
@article{ADM_2007_2_a4,
     author = {V. A. Bovdi and A. V. Konovalov},
     title = {Integral group ring of the {McLaughlin} simple group},
     journal = {Algebra and discrete mathematics},
     pages = {43--53},
     publisher = {mathdoc},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2007_2_a4/}
}
TY  - JOUR
AU  - V. A. Bovdi
AU  - A. V. Konovalov
TI  - Integral group ring of the McLaughlin simple group
JO  - Algebra and discrete mathematics
PY  - 2007
SP  - 43
EP  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2007_2_a4/
LA  - en
ID  - ADM_2007_2_a4
ER  - 
%0 Journal Article
%A V. A. Bovdi
%A A. V. Konovalov
%T Integral group ring of the McLaughlin simple group
%J Algebra and discrete mathematics
%D 2007
%P 43-53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2007_2_a4/
%G en
%F ADM_2007_2_a4
V. A. Bovdi; A. V. Konovalov. Integral group ring of the McLaughlin simple group. Algebra and discrete mathematics, no. 2 (2007), pp. 43-53. http://geodesic.mathdoc.fr/item/ADM_2007_2_a4/