Integral group ring of the McLaughlin simple group
Algebra and discrete mathematics, no. 2 (2007), pp. 43-53
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Zassenhaus conjecture for the normalized unit group of the integral group ring of the McLaughlin sporadic group $\mathsf{McL}$. As a consequence, we confirm for this group the Kimmerle's conjecture on prime graphs.
Keywords:
Kimmerle conjecture, integral group ring.
Mots-clés : Zassenhaus conjecture, torsion unit, partial augmentation
Mots-clés : Zassenhaus conjecture, torsion unit, partial augmentation
@article{ADM_2007_2_a4,
author = {V. A. Bovdi and A. V. Konovalov},
title = {Integral group ring of the {McLaughlin} simple group},
journal = {Algebra and discrete mathematics},
pages = {43--53},
publisher = {mathdoc},
number = {2},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2007_2_a4/}
}
V. A. Bovdi; A. V. Konovalov. Integral group ring of the McLaughlin simple group. Algebra and discrete mathematics, no. 2 (2007), pp. 43-53. http://geodesic.mathdoc.fr/item/ADM_2007_2_a4/