R-S correspondence for the Hyper-octahedral group of type $B_n$~-- A different approach
Algebra and discrete mathematics, no. 1 (2007), pp. 86-107
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type $B_n$ on partitions of $(\frac{1}{2}r(r+1)+2n)$ whose $2-$core is $\delta_r$, $r\geq 0$ where $\delta_r$ is the partition with parts $(r,r-1,\dots,0)$. We derive some combinatorial properties associated with this correspondence.
Keywords:
Robinson Schensted correspondence, Hyperoctahedral group of type $B_n$
Mots-clés : Domino tableau.
Mots-clés : Domino tableau.
@article{ADM_2007_1_a7,
author = {M. Parvathi and B. Sivakumar and A. Tamilselvi},
title = {R-S correspondence for the {Hyper-octahedral} group of type $B_n$~-- {A} different approach},
journal = {Algebra and discrete mathematics},
pages = {86--107},
publisher = {mathdoc},
number = {1},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2007_1_a7/}
}
TY - JOUR AU - M. Parvathi AU - B. Sivakumar AU - A. Tamilselvi TI - R-S correspondence for the Hyper-octahedral group of type $B_n$~-- A different approach JO - Algebra and discrete mathematics PY - 2007 SP - 86 EP - 107 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2007_1_a7/ LA - en ID - ADM_2007_1_a7 ER -
%0 Journal Article %A M. Parvathi %A B. Sivakumar %A A. Tamilselvi %T R-S correspondence for the Hyper-octahedral group of type $B_n$~-- A different approach %J Algebra and discrete mathematics %D 2007 %P 86-107 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2007_1_a7/ %G en %F ADM_2007_1_a7
M. Parvathi; B. Sivakumar; A. Tamilselvi. R-S correspondence for the Hyper-octahedral group of type $B_n$~-- A different approach. Algebra and discrete mathematics, no. 1 (2007), pp. 86-107. http://geodesic.mathdoc.fr/item/ADM_2007_1_a7/