R-S correspondence for the Hyper-octahedral group of type $B_n$~-- A different approach
Algebra and discrete mathematics, no. 1 (2007), pp. 86-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type $B_n$ on partitions of $(\frac{1}{2}r(r+1)+2n)$ whose $2-$core is $\delta_r$, $r\geq 0$ where $\delta_r$ is the partition with parts $(r,r-1,\dots,0)$. We derive some combinatorial properties associated with this correspondence.
Keywords: Robinson Schensted correspondence, Hyperoctahedral group of type $B_n$
Mots-clés : Domino tableau.
@article{ADM_2007_1_a7,
     author = {M. Parvathi and B. Sivakumar and A. Tamilselvi},
     title = {R-S correspondence for the {Hyper-octahedral} group of  type $B_n$~-- {A} different approach},
     journal = {Algebra and discrete mathematics},
     pages = {86--107},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2007_1_a7/}
}
TY  - JOUR
AU  - M. Parvathi
AU  - B. Sivakumar
AU  - A. Tamilselvi
TI  - R-S correspondence for the Hyper-octahedral group of  type $B_n$~-- A different approach
JO  - Algebra and discrete mathematics
PY  - 2007
SP  - 86
EP  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2007_1_a7/
LA  - en
ID  - ADM_2007_1_a7
ER  - 
%0 Journal Article
%A M. Parvathi
%A B. Sivakumar
%A A. Tamilselvi
%T R-S correspondence for the Hyper-octahedral group of  type $B_n$~-- A different approach
%J Algebra and discrete mathematics
%D 2007
%P 86-107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2007_1_a7/
%G en
%F ADM_2007_1_a7
M. Parvathi; B. Sivakumar; A. Tamilselvi. R-S correspondence for the Hyper-octahedral group of  type $B_n$~-- A different approach. Algebra and discrete mathematics, no. 1 (2007), pp. 86-107. http://geodesic.mathdoc.fr/item/ADM_2007_1_a7/