Combinatorics of partial wreath power of finite inverse symmetric semigroup $\mathcal{IS}_d$
Algebra and discrete mathematics, no. 1 (2007), pp. 49-60
Voir la notice de l'article provenant de la source Math-Net.Ru
We study some combinatorial properties of $\wr_p^k \mathcal{IS}_d$. In particular, we calculate its order, the number of idempotents and the number of $\mathcal D$-classes. For a given based graph $\Gamma\subset T$ we compute the number of elements in its $\mathcal D$-class $D_\Gamma$ and the number of $\mathcal R$- and $\mathcal L$-classes in $D_\Gamma$.
Keywords:
Wreath product, finite inverse symmetric semigroup, rooted tree
Mots-clés : partial automorphism.
Mots-clés : partial automorphism.
@article{ADM_2007_1_a4,
author = {Yevgeniya Kochubinska},
title = {Combinatorics of partial wreath power of finite inverse symmetric semigroup $\mathcal{IS}_d$},
journal = {Algebra and discrete mathematics},
pages = {49--60},
publisher = {mathdoc},
number = {1},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2007_1_a4/}
}
TY - JOUR
AU - Yevgeniya Kochubinska
TI - Combinatorics of partial wreath power of finite inverse symmetric semigroup $\mathcal{IS}_d$
JO - Algebra and discrete mathematics
PY - 2007
SP - 49
EP - 60
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ADM_2007_1_a4/
LA - en
ID - ADM_2007_1_a4
ER -
Yevgeniya Kochubinska. Combinatorics of partial wreath power of finite inverse symmetric semigroup $\mathcal{IS}_d$. Algebra and discrete mathematics, no. 1 (2007), pp. 49-60. http://geodesic.mathdoc.fr/item/ADM_2007_1_a4/