Pseudodiscrete balleans
Algebra and discrete mathematics, no. 4 (2006), pp. 81-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

A ballean $\mathcal{B}$ is a set $X$ endowed with some family of subsets of $X$ which are called the balls. The properties of the balls are postulated in such a way that a ballean can be considered as an asymptotic counterpart of a uniform topological space. A ballean is called pseudodiscrete if “almost all” balls of every pregiven radius are singletons. We give a filter characterization of pseudodiscrete balleans and their classification up to quasi-asymorphisms. It is proved that a ballean is pseudodiscrete if and only if every real function defined on its support is slowly oscillating. We show that the class of irresolvable balleans are tightly connected with the class of pseudodiscrete balleans.
Keywords: ballean, pseudodiscrete ballean, pseudobounded ballean, slowly oscillating function, irresolvable ballean, asymorphism
Mots-clés : quasi-asymorphism.
@article{ADM_2006_4_a5,
     author = {O. I. Protasova},
     title = {Pseudodiscrete balleans},
     journal = {Algebra and discrete mathematics},
     pages = {81--92},
     publisher = {mathdoc},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2006_4_a5/}
}
TY  - JOUR
AU  - O. I. Protasova
TI  - Pseudodiscrete balleans
JO  - Algebra and discrete mathematics
PY  - 2006
SP  - 81
EP  - 92
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2006_4_a5/
LA  - en
ID  - ADM_2006_4_a5
ER  - 
%0 Journal Article
%A O. I. Protasova
%T Pseudodiscrete balleans
%J Algebra and discrete mathematics
%D 2006
%P 81-92
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2006_4_a5/
%G en
%F ADM_2006_4_a5
O. I. Protasova. Pseudodiscrete balleans. Algebra and discrete mathematics, no. 4 (2006), pp. 81-92. http://geodesic.mathdoc.fr/item/ADM_2006_4_a5/