On minimal $\omega$-composition non-$\frak H$-formations
Algebra and discrete mathematics, no. 4 (2006), pp. 1-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\frak{H}$ be some class of groups. A formation $\frak{F}$ is called a minimal $\tau$-closed $\omega$-composition non-$\frak{H}$-formation [1] if $\frak{F}\nsubseteq\frak{H}$ but $\frak{F}_1\subseteq\frak{H}$ for all proper $\tau$-closed $\omega$-composition subformations $\frak{F}_1$ of $\frak{F}$. In this paper we describe the minimal $\tau$-closed $\omega$-composition non-$\frak{H}$-formations, where $\frak H$ is a 2-multiply local formation and $\tau$ is a subgroup functor such that for any group $G$ all subgroups from $\tau(G)$ are subnormal in $G$.
Keywords: $\tau$-closed $\omega$-composition
Mots-clés : formation, satellite.
@article{ADM_2006_4_a0,
     author = {Liudmila I. Belous and Vadim M. Sel'kin},
     title = {On minimal $\omega$-composition non-$\frak H$-formations},
     journal = {Algebra and discrete mathematics},
     pages = {1--11},
     publisher = {mathdoc},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2006_4_a0/}
}
TY  - JOUR
AU  - Liudmila I. Belous
AU  - Vadim M. Sel'kin
TI  - On minimal $\omega$-composition non-$\frak H$-formations
JO  - Algebra and discrete mathematics
PY  - 2006
SP  - 1
EP  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2006_4_a0/
LA  - en
ID  - ADM_2006_4_a0
ER  - 
%0 Journal Article
%A Liudmila I. Belous
%A Vadim M. Sel'kin
%T On minimal $\omega$-composition non-$\frak H$-formations
%J Algebra and discrete mathematics
%D 2006
%P 1-11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2006_4_a0/
%G en
%F ADM_2006_4_a0
Liudmila I. Belous; Vadim M. Sel'kin. On minimal $\omega$-composition non-$\frak H$-formations. Algebra and discrete mathematics, no. 4 (2006), pp. 1-11. http://geodesic.mathdoc.fr/item/ADM_2006_4_a0/