On minimal $\omega$-composition non-$\frak H$-formations
Algebra and discrete mathematics, no. 4 (2006), pp. 1-11
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\frak{H}$ be some class of groups. A formation $\frak{F}$ is called a minimal $\tau$-closed $\omega$-composition non-$\frak{H}$-formation [1] if $\frak{F}\nsubseteq\frak{H}$ but $\frak{F}_1\subseteq\frak{H}$ for all proper $\tau$-closed $\omega$-composition subformations $\frak{F}_1$ of $\frak{F}$. In this paper we describe the minimal $\tau$-closed $\omega$-composition non-$\frak{H}$-formations, where $\frak H$ is a 2-multiply local formation and $\tau$ is a subgroup functor such that for any group $G$ all subgroups from $\tau(G)$ are subnormal in $G$.
Keywords:
$\tau$-closed $\omega$-composition
Mots-clés : formation, satellite.
Mots-clés : formation, satellite.
@article{ADM_2006_4_a0,
author = {Liudmila I. Belous and Vadim M. Sel'kin},
title = {On minimal $\omega$-composition non-$\frak H$-formations},
journal = {Algebra and discrete mathematics},
pages = {1--11},
publisher = {mathdoc},
number = {4},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2006_4_a0/}
}
Liudmila I. Belous; Vadim M. Sel'kin. On minimal $\omega$-composition non-$\frak H$-formations. Algebra and discrete mathematics, no. 4 (2006), pp. 1-11. http://geodesic.mathdoc.fr/item/ADM_2006_4_a0/