Arithmetic properties of exceptional lattice paths
Algebra and discrete mathematics, no. 3 (2006), pp. 101-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a fixed real number $\rho>0$, let $L$ be an affine line of slope $\rho^{-1}$ in $\mathbb{R}^2$. We show that the closest approximation of $L$ by a path $P$ in $\mathbb{Z}^2$ is unique, except in one case, up to integral translation. We study this exceptional case. For irrational $\rho$, the projection of $P$ to $L$ yields two quasicrystallographic tilings in the sense of Lunnon and Pleasants [5]. If $\rho$ satisfies an equation $x^2=mx+1$ with $m\in\mathbb{Z}$, both quasicrystals are mapped to each other by a substitution rule. For rational $\rho$, we characterize the periodic parts of $P$ by geometric and arithmetic properties, and exhibit a relationship to the hereditary algebras $H_{\rho}(K)$ over a field $K$ introduced in a recent proof of a conjecture of Roiter.
Keywords: Lattice path, uniform enumeration, quasicrystal.
@article{ADM_2006_3_a8,
     author = {Wolfgang Rump},
     title = {Arithmetic properties of exceptional lattice paths},
     journal = {Algebra and discrete mathematics},
     pages = {101--118},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2006_3_a8/}
}
TY  - JOUR
AU  - Wolfgang Rump
TI  - Arithmetic properties of exceptional lattice paths
JO  - Algebra and discrete mathematics
PY  - 2006
SP  - 101
EP  - 118
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2006_3_a8/
LA  - en
ID  - ADM_2006_3_a8
ER  - 
%0 Journal Article
%A Wolfgang Rump
%T Arithmetic properties of exceptional lattice paths
%J Algebra and discrete mathematics
%D 2006
%P 101-118
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2006_3_a8/
%G en
%F ADM_2006_3_a8
Wolfgang Rump. Arithmetic properties of exceptional lattice paths. Algebra and discrete mathematics, no. 3 (2006), pp. 101-118. http://geodesic.mathdoc.fr/item/ADM_2006_3_a8/