Uncountably many non-isomorphic nilpotent real $n$-Lie algebras
Algebra and discrete mathematics, no. 1 (2006), pp. 81-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are an uncountable number of non-isomorphic nilpotent real Lie algebras for every dimension greater than or equal to 7. We extend an old technique, which applies to Lie algebras of dimension greater than or equal to 10, to find corresponding results for $n$-Lie algebras. In particular, for $n\ge 6$, there are an uncountable number of non-isomorphic nilpotent real $n$-Lie algebras of dimension $n+4$.
Keywords: nilpotent, algebraically independent, transcendence degree.
Mots-clés : $n$-Lie algebras
@article{ADM_2006_1_a6,
     author = {Ernest Stitzinger and Michael P. Williams},
     title = {Uncountably many non-isomorphic nilpotent real $n${-Lie} algebras},
     journal = {Algebra and discrete mathematics},
     pages = {81--88},
     publisher = {mathdoc},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2006_1_a6/}
}
TY  - JOUR
AU  - Ernest Stitzinger
AU  - Michael P. Williams
TI  - Uncountably many non-isomorphic nilpotent real $n$-Lie algebras
JO  - Algebra and discrete mathematics
PY  - 2006
SP  - 81
EP  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2006_1_a6/
LA  - en
ID  - ADM_2006_1_a6
ER  - 
%0 Journal Article
%A Ernest Stitzinger
%A Michael P. Williams
%T Uncountably many non-isomorphic nilpotent real $n$-Lie algebras
%J Algebra and discrete mathematics
%D 2006
%P 81-88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2006_1_a6/
%G en
%F ADM_2006_1_a6
Ernest Stitzinger; Michael P. Williams. Uncountably many non-isomorphic nilpotent real $n$-Lie algebras. Algebra and discrete mathematics, no. 1 (2006), pp. 81-88. http://geodesic.mathdoc.fr/item/ADM_2006_1_a6/