Action type geometrical equivalence of representations of groups
Algebra and discrete mathematics, no. 4 (2005), pp. 48-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we prove (Theorem 8.1) that there exists a continuum of non isomorphic simple modules over $KF_{2}$where $F_{2}$ is a free group with $2$generators (compare with [Ca] where a continuum of non isomorphic simple $2$-generated groups is constructed). Using this fact we give an example of a non action type logically Noetherian representation (Section 9).
@article{ADM_2005_4_a4,
     author = {B. Plotkin and A. Tsurkov},
     title = {Action type geometrical equivalence of representations of groups},
     journal = {Algebra and discrete mathematics},
     pages = {48--79},
     publisher = {mathdoc},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2005_4_a4/}
}
TY  - JOUR
AU  - B. Plotkin
AU  - A. Tsurkov
TI  - Action type geometrical equivalence of representations of groups
JO  - Algebra and discrete mathematics
PY  - 2005
SP  - 48
EP  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2005_4_a4/
LA  - en
ID  - ADM_2005_4_a4
ER  - 
%0 Journal Article
%A B. Plotkin
%A A. Tsurkov
%T Action type geometrical equivalence of representations of groups
%J Algebra and discrete mathematics
%D 2005
%P 48-79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2005_4_a4/
%G en
%F ADM_2005_4_a4
B. Plotkin; A. Tsurkov. Action type geometrical equivalence of representations of groups. Algebra and discrete mathematics, no. 4 (2005), pp. 48-79. http://geodesic.mathdoc.fr/item/ADM_2005_4_a4/