Action type geometrical equivalence of representations of groups
Algebra and discrete mathematics, no. 4 (2005), pp. 48-79
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper we prove (Theorem 8.1) that there exists a continuum of non isomorphic simple modules over $KF_{2}$where $F_{2}$ is a free group with $2$generators (compare with [Ca] where a continuum of non isomorphic simple $2$-generated groups is constructed). Using this fact we give an example of a non action type logically Noetherian representation (Section 9).
@article{ADM_2005_4_a4,
author = {B. Plotkin and A. Tsurkov},
title = {Action type geometrical equivalence of representations of groups},
journal = {Algebra and discrete mathematics},
pages = {48--79},
publisher = {mathdoc},
number = {4},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2005_4_a4/}
}
B. Plotkin; A. Tsurkov. Action type geometrical equivalence of representations of groups. Algebra and discrete mathematics, no. 4 (2005), pp. 48-79. http://geodesic.mathdoc.fr/item/ADM_2005_4_a4/