Presentations and word problem for strong semilattices of semigroups
Algebra and discrete mathematics, no. 4 (2005), pp. 28-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $I$ be a semilattice, and $S_i(i\in I)$ be a family of disjoint semigroups. Then we prove that the strong semilattice $S=\mathcal{S} [I,S_i,\phi_{j,i}]$ of semigroups $S_i$ with homomorphisms $\phi _{j,i}:S_j\rightarrow S_i$ $(j\geq i)$ is finitely presented if and only if $I$ is finite and each $S_i$ $(i\in I)$ is finitely presented. Moreover, for a finite semilattice $I$$S$ has a soluble word problem if and only if each $S_i$ $(i\in I)$ has a soluble word problem. Finally, we give an example of non-automatic semigroup which has a soluble word problem.
Keywords: Semigroup presentations, strong semilattices of semigroups, word problems.
@article{ADM_2005_4_a2,
     author = {Gonca Ayik and Hayrullah Ayik and Yu. \"Unl\"u},
     title = {Presentations and word problem for strong semilattices of semigroups},
     journal = {Algebra and discrete mathematics},
     pages = {28--35},
     publisher = {mathdoc},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2005_4_a2/}
}
TY  - JOUR
AU  - Gonca Ayik
AU  - Hayrullah Ayik
AU  - Yu. Ünlü
TI  - Presentations and word problem for strong semilattices of semigroups
JO  - Algebra and discrete mathematics
PY  - 2005
SP  - 28
EP  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2005_4_a2/
LA  - en
ID  - ADM_2005_4_a2
ER  - 
%0 Journal Article
%A Gonca Ayik
%A Hayrullah Ayik
%A Yu. Ünlü
%T Presentations and word problem for strong semilattices of semigroups
%J Algebra and discrete mathematics
%D 2005
%P 28-35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2005_4_a2/
%G en
%F ADM_2005_4_a2
Gonca Ayik; Hayrullah Ayik; Yu. Ünlü. Presentations and word problem for strong semilattices of semigroups. Algebra and discrete mathematics, no. 4 (2005), pp. 28-35. http://geodesic.mathdoc.fr/item/ADM_2005_4_a2/