A note on $c$-normal subgroups of finite groups
Algebra and discrete mathematics, no. 3 (2005), pp. 85-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. We fix in every non-cyclic Sylow subgroup $P$ of $G$ some its subgroup $D$ satisfying $1|D||P|$ and study the structure of $G$ under assumption that all subgroups $H$ of $P$ with $|H|=|D|$ are $c$-normal in $G$.
Keywords: finite group, supersoluble group, $c$-normal subgroup, maximal subgroup, Sylow subgroup.
@article{ADM_2005_3_a6,
     author = {Alexander N. Skiba},
     title = {A note on $c$-normal subgroups of finite groups},
     journal = {Algebra and discrete mathematics},
     pages = {85--95},
     publisher = {mathdoc},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2005_3_a6/}
}
TY  - JOUR
AU  - Alexander N. Skiba
TI  - A note on $c$-normal subgroups of finite groups
JO  - Algebra and discrete mathematics
PY  - 2005
SP  - 85
EP  - 95
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2005_3_a6/
LA  - en
ID  - ADM_2005_3_a6
ER  - 
%0 Journal Article
%A Alexander N. Skiba
%T A note on $c$-normal subgroups of finite groups
%J Algebra and discrete mathematics
%D 2005
%P 85-95
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2005_3_a6/
%G en
%F ADM_2005_3_a6
Alexander N. Skiba. A note on $c$-normal subgroups of finite groups. Algebra and discrete mathematics, no. 3 (2005), pp. 85-95. http://geodesic.mathdoc.fr/item/ADM_2005_3_a6/