A note on $c$-normal subgroups of finite groups
Algebra and discrete mathematics, no. 3 (2005), pp. 85-95
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite group. We fix in every non-cyclic Sylow subgroup $P$ of $G$ some its subgroup $D$ satisfying $1|D||P|$ and study the structure of $G$ under assumption that all subgroups $H$ of $P$ with $|H|=|D|$ are $c$-normal in $G$.
Keywords:
finite group, supersoluble group, $c$-normal subgroup, maximal subgroup, Sylow subgroup.
@article{ADM_2005_3_a6,
author = {Alexander N. Skiba},
title = {A note on $c$-normal subgroups of finite groups},
journal = {Algebra and discrete mathematics},
pages = {85--95},
publisher = {mathdoc},
number = {3},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2005_3_a6/}
}
Alexander N. Skiba. A note on $c$-normal subgroups of finite groups. Algebra and discrete mathematics, no. 3 (2005), pp. 85-95. http://geodesic.mathdoc.fr/item/ADM_2005_3_a6/