On square-Hamiltonian graphs
Algebra and discrete mathematics, no. 3 (2005), pp. 56-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite connected graph $G$ is called square-Hamiltonian if $G^{2}$ is Hamiltonian. We prove that any join of the family of Hamiltonian graphs by tree is square-Hamiltonian. Applying this statement we show that the line graph and any round-about reconstruction of an arbitrary finite connected graph is square-Hamiltonian.
Keywords: square-Hamiltonian graphs, join of graphs, line graph, round-about reconstruction.
@article{ADM_2005_3_a4,
     author = {K. D. Protasova},
     title = {On {square-Hamiltonian} graphs},
     journal = {Algebra and discrete mathematics},
     pages = {56--59},
     publisher = {mathdoc},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2005_3_a4/}
}
TY  - JOUR
AU  - K. D. Protasova
TI  - On square-Hamiltonian graphs
JO  - Algebra and discrete mathematics
PY  - 2005
SP  - 56
EP  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2005_3_a4/
LA  - en
ID  - ADM_2005_3_a4
ER  - 
%0 Journal Article
%A K. D. Protasova
%T On square-Hamiltonian graphs
%J Algebra and discrete mathematics
%D 2005
%P 56-59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2005_3_a4/
%G en
%F ADM_2005_3_a4
K. D. Protasova. On square-Hamiltonian graphs. Algebra and discrete mathematics, no. 3 (2005), pp. 56-59. http://geodesic.mathdoc.fr/item/ADM_2005_3_a4/