On mappings of terms determined by hypersubstitutions
Algebra and discrete mathematics, no. 3 (2005), pp. 18-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

The extensions of hypersubstitutions are mappings on the set of all terms. In the present paper we characterize all hypersubstitutions which provide bijections on the set of all terms. The set of all such hypersubstitutions forms a monoid. On the other hand, one can modify each hypersubstitution to any mapping on the set of terms. For this we can consider mappings $\rho$ from the set of all hypersubstitutions into the set of all mappings on the set of all terms. If for each hypersubstitution $\sigma$ the application of $\rho(\sigma )$ to any identity in a given variety $V$ is again an identity in $V$, so that variety is called $\rho$-solid. The concept of a $\rho$-solid variety generalizes the concept of a solid variety. In the present paper, we determine all $\rho$-solid varieties of semigroups for particular mappings $\rho$.
Keywords: $\rho$-solid
Mots-clés : hypersubstitution, bijectio.
@article{ADM_2005_3_a1,
     author = {J\"org Koppitz and Slavcho Shtrakov},
     title = {On mappings of terms determined by hypersubstitutions},
     journal = {Algebra and discrete mathematics},
     pages = {18--29},
     publisher = {mathdoc},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2005_3_a1/}
}
TY  - JOUR
AU  - Jörg Koppitz
AU  - Slavcho Shtrakov
TI  - On mappings of terms determined by hypersubstitutions
JO  - Algebra and discrete mathematics
PY  - 2005
SP  - 18
EP  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2005_3_a1/
LA  - en
ID  - ADM_2005_3_a1
ER  - 
%0 Journal Article
%A Jörg Koppitz
%A Slavcho Shtrakov
%T On mappings of terms determined by hypersubstitutions
%J Algebra and discrete mathematics
%D 2005
%P 18-29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2005_3_a1/
%G en
%F ADM_2005_3_a1
Jörg Koppitz; Slavcho Shtrakov. On mappings of terms determined by hypersubstitutions. Algebra and discrete mathematics, no. 3 (2005), pp. 18-29. http://geodesic.mathdoc.fr/item/ADM_2005_3_a1/