Extended $G$-vertex colored partition algebras as centralizer algebras of symmetric groups
Algebra and discrete mathematics, no. 2 (2005), pp. 58-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Partition algebras $P_k(x)$ have been defined in [M1] and [Jo]. We introduce a new class of algebras for every group $G$ called "Extended $G$-Vertex Colored Partition Algebras," denoted by $\widehat{P}_{k}(x,G)$, which contain partition algebras $P_k(x)$, as subalgebras. We generalized Jones result by showing that for a finite group $G$, the algebra $\widehat{P}_{k}(n,G)$ is the centralizer algebra of an action of the symmetric group $S_n$ on tensor space $W^{\otimes k}$, where $W=\mathbb{C}^{n|G|}$. Further we show that these algebras $\widehat{P}_{k}(x,G)$ contain as subalgebras the "$G$-Vertex Colored Partition Algebras ${P_{k}(x,G)}$," introduced in [PK1].
Keywords: centralizer algebra, direct product, wreath product, symmetric group.
Mots-clés : Partition algebra
@article{ADM_2005_2_a4,
     author = {M. Parvathi and A. Joseph Kennedy},
     title = {Extended $G$-vertex colored partition algebras as centralizer algebras of symmetric groups},
     journal = {Algebra and discrete mathematics},
     pages = {58--79},
     publisher = {mathdoc},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2005_2_a4/}
}
TY  - JOUR
AU  - M. Parvathi
AU  - A. Joseph Kennedy
TI  - Extended $G$-vertex colored partition algebras as centralizer algebras of symmetric groups
JO  - Algebra and discrete mathematics
PY  - 2005
SP  - 58
EP  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2005_2_a4/
LA  - en
ID  - ADM_2005_2_a4
ER  - 
%0 Journal Article
%A M. Parvathi
%A A. Joseph Kennedy
%T Extended $G$-vertex colored partition algebras as centralizer algebras of symmetric groups
%J Algebra and discrete mathematics
%D 2005
%P 58-79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2005_2_a4/
%G en
%F ADM_2005_2_a4
M. Parvathi; A. Joseph Kennedy. Extended $G$-vertex colored partition algebras as centralizer algebras of symmetric groups. Algebra and discrete mathematics, no. 2 (2005), pp. 58-79. http://geodesic.mathdoc.fr/item/ADM_2005_2_a4/