Some properties of primitive matrices over Bezout B-domain
Algebra and discrete mathematics, no. 2 (2005), pp. 46-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of primitive matrices (matrices for which the greatest common divisor of the minors of maximal order is equal to 1) over Bezout B – domain, i.e. commutative domain finitely generated principal ideal in which for all $a,b,c$ with $(a,b,c)=1,c\neq 0,$ there exists element $r\in R$, such that $(a+rb, c)=1$ is investigated. The results obtained enable to describe invariants transforming matrices, i.e. matrices which reduce the given matrix to its canonical diagonal form.
Keywords: elementary divisor ring, canonical diagonal form
Mots-clés : Bezout $B$-domain, transformable matrices, invariants, primitive matrices.
@article{ADM_2005_2_a3,
     author = {V. P. Shchedryk},
     title = {Some properties of primitive matrices over {Bezout} {B-domain}},
     journal = {Algebra and discrete mathematics},
     pages = {46--57},
     publisher = {mathdoc},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2005_2_a3/}
}
TY  - JOUR
AU  - V. P. Shchedryk
TI  - Some properties of primitive matrices over Bezout B-domain
JO  - Algebra and discrete mathematics
PY  - 2005
SP  - 46
EP  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2005_2_a3/
LA  - en
ID  - ADM_2005_2_a3
ER  - 
%0 Journal Article
%A V. P. Shchedryk
%T Some properties of primitive matrices over Bezout B-domain
%J Algebra and discrete mathematics
%D 2005
%P 46-57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2005_2_a3/
%G en
%F ADM_2005_2_a3
V. P. Shchedryk. Some properties of primitive matrices over Bezout B-domain. Algebra and discrete mathematics, no. 2 (2005), pp. 46-57. http://geodesic.mathdoc.fr/item/ADM_2005_2_a3/