On the mean square of the Epstein zeta-function
Algebra and discrete mathematics, no. 1 (2005), pp. 105-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the second power moment of the Epstein zeta-function and construct the asymptotic formula in special case, when $\varphi_{0}(u,v)=u^{2}+Av^{2}$, $A>0$, $A\equiv 1,2(mod\,4)$ and $\varphi_{0}(u,v)$ belongs to the one-class kind $G_{0}$ of the quadratic forms of discriminant $-4A$.
Keywords: Epstein zeta-function, approximate functional equation, asymptotic formula, second power moment.
@article{ADM_2005_1_a9,
     author = {O. V. Savastru and P. D. Varbanets},
     title = {On the mean square of the {Epstein} zeta-function},
     journal = {Algebra and discrete mathematics},
     pages = {105--121},
     publisher = {mathdoc},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2005_1_a9/}
}
TY  - JOUR
AU  - O. V. Savastru
AU  - P. D. Varbanets
TI  - On the mean square of the Epstein zeta-function
JO  - Algebra and discrete mathematics
PY  - 2005
SP  - 105
EP  - 121
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2005_1_a9/
LA  - en
ID  - ADM_2005_1_a9
ER  - 
%0 Journal Article
%A O. V. Savastru
%A P. D. Varbanets
%T On the mean square of the Epstein zeta-function
%J Algebra and discrete mathematics
%D 2005
%P 105-121
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2005_1_a9/
%G en
%F ADM_2005_1_a9
O. V. Savastru; P. D. Varbanets. On the mean square of the Epstein zeta-function. Algebra and discrete mathematics, no. 1 (2005), pp. 105-121. http://geodesic.mathdoc.fr/item/ADM_2005_1_a9/