On the mean square of the Epstein zeta-function
Algebra and discrete mathematics, no. 1 (2005), pp. 105-121
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the second power moment of the Epstein zeta-function and construct the asymptotic formula in special case, when $\varphi_{0}(u,v)=u^{2}+Av^{2}$, $A>0$, $A\equiv 1,2(mod\,4)$ and $\varphi_{0}(u,v)$ belongs to the one-class kind $G_{0}$ of the quadratic forms of discriminant $-4A$.
Keywords:
Epstein zeta-function, approximate functional equation, asymptotic formula, second power moment.
@article{ADM_2005_1_a9,
author = {O. V. Savastru and P. D. Varbanets},
title = {On the mean square of the {Epstein} zeta-function},
journal = {Algebra and discrete mathematics},
pages = {105--121},
publisher = {mathdoc},
number = {1},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2005_1_a9/}
}
O. V. Savastru; P. D. Varbanets. On the mean square of the Epstein zeta-function. Algebra and discrete mathematics, no. 1 (2005), pp. 105-121. http://geodesic.mathdoc.fr/item/ADM_2005_1_a9/