A decomposition theorem for semiprime rings
Algebra and discrete mathematics, no. 1 (2005), pp. 62-68
Voir la notice de l'article provenant de la source Math-Net.Ru
A ring $A$ is called an $FDI$-ring if there exists a decomposition of the identity of $A$ in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent $e$ artinian if the ring $eAe$ is Artinian. We prove that every semiprime $FDI$-ring is a direct product of a semisimple Artinian ring and a semiprime $FDI$-ring whose identity decomposition doesn't contain artinian idempotents.
Keywords:
minor of a ring, local idempotent, semiprime ring, Peirce decomposition.
@article{ADM_2005_1_a5,
author = {Marina Khibina},
title = {A decomposition theorem for semiprime rings},
journal = {Algebra and discrete mathematics},
pages = {62--68},
publisher = {mathdoc},
number = {1},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2005_1_a5/}
}
Marina Khibina. A decomposition theorem for semiprime rings. Algebra and discrete mathematics, no. 1 (2005), pp. 62-68. http://geodesic.mathdoc.fr/item/ADM_2005_1_a5/