Gorenstein matrices
Algebra and discrete mathematics, no. 1 (2005), pp. 8-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A=(a_{ij})$ be an integral matrix. We say that $A$ is $(0, 1, 2)$-matrix if $a_{ij}\in\{0,1,2\}$. There exists the Gorenstein $(0, 1, 2)$-matrix for any permutation $\sigma$ on the set $\{1,\dots,n\}$ without fixed elements. For every positive integer $n$ there exists the Gorenstein cyclic $(0, 1, 2)$-matrix $A_{n}$ such that $inx\,A_{n}=2$. If a Latin square ${\mathcal L}_{n}$ with a first row and first column $(0,1,\ldots,n-1)$ is an exponent matrix, then $n=2^{m}$ and ${\mathcal L}_{n}$ is the Cayley table of a direct product of $m$ copies of the cyclic group of order 2. Conversely, the Cayley table ${{\mathcal E}}_{m}$ of the elementary abelian group $G_{m}=(2)\times\ldots\times(2)$ of order $2^{m}$ is a Latin square and a Gorenstein symmetric matrix with first row $(0,1,\ldots,2^{m}-1)$ and $$ \sigma({{\mathcal E}}_{m})=\begin{pmatrix}123\ldots 2^{m}-12^{m}\\ 2^{m}2^{m}-12^{m}-2\ldots 21\end{pmatrix}. $$
Keywords: exponent matrix; Gorenstein tiled order, Gorenstein matrix, doubly stochastic matrix.
Mots-clés : admissible quiver
@article{ADM_2005_1_a2,
     author = {M. A. Dokuchaev and V. V. Kirichenko and A. V. Zelensky and V. N. Zhuravlev},
     title = {Gorenstein matrices},
     journal = {Algebra and discrete mathematics},
     pages = {8--29},
     publisher = {mathdoc},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2005_1_a2/}
}
TY  - JOUR
AU  - M. A. Dokuchaev
AU  - V. V. Kirichenko
AU  - A. V. Zelensky
AU  - V. N. Zhuravlev
TI  - Gorenstein matrices
JO  - Algebra and discrete mathematics
PY  - 2005
SP  - 8
EP  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2005_1_a2/
LA  - en
ID  - ADM_2005_1_a2
ER  - 
%0 Journal Article
%A M. A. Dokuchaev
%A V. V. Kirichenko
%A A. V. Zelensky
%A V. N. Zhuravlev
%T Gorenstein matrices
%J Algebra and discrete mathematics
%D 2005
%P 8-29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2005_1_a2/
%G en
%F ADM_2005_1_a2
M. A. Dokuchaev; V. V. Kirichenko; A. V. Zelensky; V. N. Zhuravlev. Gorenstein matrices. Algebra and discrete mathematics, no. 1 (2005), pp. 8-29. http://geodesic.mathdoc.fr/item/ADM_2005_1_a2/