Diagonalizability theorems for matrices over rings with finite stable range
Algebra and discrete mathematics, no. 1 (2005), pp. 151-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct the theory of diagonalizability for matrices over Bezout ring with finite stable range. It is shown that every commutative Bezout ring with compact minimal prime spectrum is Hermite. It is also shown that a principal ideal domain with stable range 1 is Euclidean domain, and every semilocal principal ideal domain is Euclidean domain. It is proved that every matrix over an elementary divisor ring can be reduced to “almost” diagonal matrix by elementary transformations.
Keywords: finite stable range, elementary divisor ring, Hermite ring, ring with elementary reduction of matrices, Bezout ring, minimal prime spectrum.
@article{ADM_2005_1_a12,
     author = {Bogdan Zabavsky},
     title = {Diagonalizability theorems for matrices over rings with finite stable range},
     journal = {Algebra and discrete mathematics},
     pages = {151--165},
     publisher = {mathdoc},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2005_1_a12/}
}
TY  - JOUR
AU  - Bogdan Zabavsky
TI  - Diagonalizability theorems for matrices over rings with finite stable range
JO  - Algebra and discrete mathematics
PY  - 2005
SP  - 151
EP  - 165
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2005_1_a12/
LA  - en
ID  - ADM_2005_1_a12
ER  - 
%0 Journal Article
%A Bogdan Zabavsky
%T Diagonalizability theorems for matrices over rings with finite stable range
%J Algebra and discrete mathematics
%D 2005
%P 151-165
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2005_1_a12/
%G en
%F ADM_2005_1_a12
Bogdan Zabavsky. Diagonalizability theorems for matrices over rings with finite stable range. Algebra and discrete mathematics, no. 1 (2005), pp. 151-165. http://geodesic.mathdoc.fr/item/ADM_2005_1_a12/