$C^*$-algebra generated by four projections with sum equal to~2
Algebra and discrete mathematics, no. 3 (2004), pp. 126-134
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the $C^*$-algebra generated by four orthogonal projections $p_1, p_2, p_3, p_4$, satisfying the linear relation $p_1+p_2+p_3+p_4=2I$. The simplest realization by $2\times 2$-matrix-functions over the sphere $S^2$ is given.
Keywords:
matrix-functions, projections, finitely generated $C^*$-algebras.
@article{ADM_2004_3_a9,
author = {Yuri Savchuk},
title = {$C^*$-algebra generated by four projections with sum equal to~2},
journal = {Algebra and discrete mathematics},
pages = {126--134},
publisher = {mathdoc},
number = {3},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2004_3_a9/}
}
Yuri Savchuk. $C^*$-algebra generated by four projections with sum equal to~2. Algebra and discrete mathematics, no. 3 (2004), pp. 126-134. http://geodesic.mathdoc.fr/item/ADM_2004_3_a9/