$C^*$-algebra generated by four projections with sum equal to~2
Algebra and discrete mathematics, no. 3 (2004), pp. 126-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the $C^*$-algebra generated by four orthogonal projections $p_1, p_2, p_3, p_4$, satisfying the linear relation $p_1+p_2+p_3+p_4=2I$. The simplest realization by $2\times 2$-matrix-functions over the sphere $S^2$ is given.
Keywords: matrix-functions, projections, finitely generated $C^*$-algebras.
@article{ADM_2004_3_a9,
     author = {Yuri Savchuk},
     title = {$C^*$-algebra generated by four projections with sum equal to~2},
     journal = {Algebra and discrete mathematics},
     pages = {126--134},
     publisher = {mathdoc},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2004_3_a9/}
}
TY  - JOUR
AU  - Yuri Savchuk
TI  - $C^*$-algebra generated by four projections with sum equal to~2
JO  - Algebra and discrete mathematics
PY  - 2004
SP  - 126
EP  - 134
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2004_3_a9/
LA  - en
ID  - ADM_2004_3_a9
ER  - 
%0 Journal Article
%A Yuri Savchuk
%T $C^*$-algebra generated by four projections with sum equal to~2
%J Algebra and discrete mathematics
%D 2004
%P 126-134
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2004_3_a9/
%G en
%F ADM_2004_3_a9
Yuri Savchuk. $C^*$-algebra generated by four projections with sum equal to~2. Algebra and discrete mathematics, no. 3 (2004), pp. 126-134. http://geodesic.mathdoc.fr/item/ADM_2004_3_a9/