On the Tits alternative for some generalized triangle groups
Algebra and discrete mathematics, no. 2 (2004), pp. 23-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

One says that the Tits alternative holds for a finitely generated group $\Gamma$ if $\Gamma$ contains either a non abelian free subgroup or a solvable subgroup of finite index. Rosenberger states the conjecture that the Tits alternative holds for generalized triangle groups $T(k,l,m,R)=\langle a,b; a^k=b^l=R^m(a,b)=1\rangle$. In the paper Rosenberger's conjecture is proved for groups $T(2,l,2,R)$ with $l=6,12,30,60$ and some special groups $T(3,4,2,R)$.
Keywords: generalized triangle group, free subgroup.
Mots-clés : Tits alternative
@article{ADM_2004_2_a4,
     author = {Valery Beniash-Kryvets and Oxana Barkovich},
     title = {On the {Tits} alternative for some generalized triangle groups},
     journal = {Algebra and discrete mathematics},
     pages = {23--44},
     publisher = {mathdoc},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2004_2_a4/}
}
TY  - JOUR
AU  - Valery Beniash-Kryvets
AU  - Oxana Barkovich
TI  - On the Tits alternative for some generalized triangle groups
JO  - Algebra and discrete mathematics
PY  - 2004
SP  - 23
EP  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2004_2_a4/
LA  - en
ID  - ADM_2004_2_a4
ER  - 
%0 Journal Article
%A Valery Beniash-Kryvets
%A Oxana Barkovich
%T On the Tits alternative for some generalized triangle groups
%J Algebra and discrete mathematics
%D 2004
%P 23-44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2004_2_a4/
%G en
%F ADM_2004_2_a4
Valery Beniash-Kryvets; Oxana Barkovich. On the Tits alternative for some generalized triangle groups. Algebra and discrete mathematics, no. 2 (2004), pp. 23-44. http://geodesic.mathdoc.fr/item/ADM_2004_2_a4/