On the Tits alternative for some generalized triangle groups
Algebra and discrete mathematics, no. 2 (2004), pp. 23-44
Voir la notice de l'article provenant de la source Math-Net.Ru
One says that the Tits alternative holds for a finitely generated group $\Gamma$ if $\Gamma$ contains either a non abelian free subgroup or a solvable subgroup of finite index. Rosenberger states the conjecture that the Tits alternative holds for generalized triangle groups $T(k,l,m,R)=\langle a,b; a^k=b^l=R^m(a,b)=1\rangle$. In the paper Rosenberger's conjecture is proved for groups $T(2,l,2,R)$ with $l=6,12,30,60$ and some special groups $T(3,4,2,R)$.
Keywords:
generalized triangle group, free subgroup.
Mots-clés : Tits alternative
Mots-clés : Tits alternative
@article{ADM_2004_2_a4,
author = {Valery Beniash-Kryvets and Oxana Barkovich},
title = {On the {Tits} alternative for some generalized triangle groups},
journal = {Algebra and discrete mathematics},
pages = {23--44},
publisher = {mathdoc},
number = {2},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2004_2_a4/}
}
Valery Beniash-Kryvets; Oxana Barkovich. On the Tits alternative for some generalized triangle groups. Algebra and discrete mathematics, no. 2 (2004), pp. 23-44. http://geodesic.mathdoc.fr/item/ADM_2004_2_a4/