On associative algebras satisfying the identity $x^5=0$
Algebra and discrete mathematics, no. 1 (2004), pp. 112-120
Voir la notice de l'article provenant de la source Math-Net.Ru
We study Kuzmin's conjecture on the index of nilpotency for the variety ${\mathcal {N}il}_5$ of associative nil-algebras of degree 5. Due to Vaughan–Lee [11] the problem is reduced to that for $k$-generator ${\mathcal {N}il}_5$-superalgebras, where $k\leq 5$. We confirm Kuzmin's conjecture for 2-generator superalgebras proving that they are nilpotent of degree 15.
Keywords:
Nil-algebra, nilpotency degree, superalgebra.
@article{ADM_2004_1_a7,
author = {Ivan P. Shestakov and Natalia Zhukavets},
title = {On associative algebras satisfying the identity $x^5=0$},
journal = {Algebra and discrete mathematics},
pages = {112--120},
publisher = {mathdoc},
number = {1},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2004_1_a7/}
}
Ivan P. Shestakov; Natalia Zhukavets. On associative algebras satisfying the identity $x^5=0$. Algebra and discrete mathematics, no. 1 (2004), pp. 112-120. http://geodesic.mathdoc.fr/item/ADM_2004_1_a7/