On associative algebras satisfying the identity $x^5=0$
Algebra and discrete mathematics, no. 1 (2004), pp. 112-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Kuzmin's conjecture on the index of nilpotency for the variety ${\mathcal {N}il}_5$ of associative nil-algebras of degree 5. Due to Vaughan–Lee [11] the problem is reduced to that for $k$-generator ${\mathcal {N}il}_5$-superalgebras, where $k\leq 5$. We confirm Kuzmin's conjecture for 2-generator superalgebras proving that they are nilpotent of degree 15.
Keywords: Nil-algebra, nilpotency degree, superalgebra.
@article{ADM_2004_1_a7,
     author = {Ivan P. Shestakov and Natalia Zhukavets},
     title = {On associative algebras satisfying the identity $x^5=0$},
     journal = {Algebra and discrete mathematics},
     pages = {112--120},
     publisher = {mathdoc},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2004_1_a7/}
}
TY  - JOUR
AU  - Ivan P. Shestakov
AU  - Natalia Zhukavets
TI  - On associative algebras satisfying the identity $x^5=0$
JO  - Algebra and discrete mathematics
PY  - 2004
SP  - 112
EP  - 120
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2004_1_a7/
LA  - en
ID  - ADM_2004_1_a7
ER  - 
%0 Journal Article
%A Ivan P. Shestakov
%A Natalia Zhukavets
%T On associative algebras satisfying the identity $x^5=0$
%J Algebra and discrete mathematics
%D 2004
%P 112-120
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2004_1_a7/
%G en
%F ADM_2004_1_a7
Ivan P. Shestakov; Natalia Zhukavets. On associative algebras satisfying the identity $x^5=0$. Algebra and discrete mathematics, no. 1 (2004), pp. 112-120. http://geodesic.mathdoc.fr/item/ADM_2004_1_a7/