On the separability of the restriction functor
Algebra and discrete mathematics, no. 3 (2003), pp. 95-101
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a group, $\Lambda=\bigoplus_{\sigma \in G}\Lambda_{\sigma}$ a strongly graded ring by $G$, $H$ a subgroup of $G$ and $\Lambda_{H}=\bigoplus_{\sigma\in H}\Lambda_{\sigma}$. We give a necessary and sufficient condition for the ring $\Lambda/\Lambda_{H}$ to be separable, generalizing the corresponding result for the ring extension $\Lambda/\Lambda_{1}$. As a consequence of this result we give a condition for $\Lambda$ to be a hereditary order in case $\Lambda$ is a strongly graded by finite group $R$-order in a separable $K$-algebra, for $R$ a Dedekind domain with quotient field $K$.
Keywords:
separable algebras, strongly graded algebras, restriction functor, induction functor.
@article{ADM_2003_3_a6,
author = {Th. Theohari-Apostolidi and H. Vavatsoulas},
title = {On the separability of the restriction functor},
journal = {Algebra and discrete mathematics},
pages = {95--101},
publisher = {mathdoc},
number = {3},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2003_3_a6/}
}
Th. Theohari-Apostolidi; H. Vavatsoulas. On the separability of the restriction functor. Algebra and discrete mathematics, no. 3 (2003), pp. 95-101. http://geodesic.mathdoc.fr/item/ADM_2003_3_a6/