On the separability of the restriction functor
Algebra and discrete mathematics, no. 3 (2003), pp. 95-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a group, $\Lambda=\bigoplus_{\sigma \in G}\Lambda_{\sigma}$ a strongly graded ring by $G$$H$ a subgroup of $G$ and $\Lambda_{H}=\bigoplus_{\sigma\in H}\Lambda_{\sigma}$. We give a necessary and sufficient condition for the ring $\Lambda/\Lambda_{H}$ to be separable, generalizing the corresponding result for the ring extension $\Lambda/\Lambda_{1}$. As a consequence of this result we give a condition for $\Lambda$ to be a hereditary order in case $\Lambda$ is a strongly graded by finite group $R$-order in a separable $K$-algebra, for $R$ a Dedekind domain with quotient field $K$.
Keywords: separable algebras, strongly graded algebras, restriction functor, induction functor.
@article{ADM_2003_3_a6,
     author = {Th. Theohari-Apostolidi and H. Vavatsoulas},
     title = {On the separability of the restriction functor},
     journal = {Algebra and discrete mathematics},
     pages = {95--101},
     publisher = {mathdoc},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2003_3_a6/}
}
TY  - JOUR
AU  - Th. Theohari-Apostolidi
AU  - H. Vavatsoulas
TI  - On the separability of the restriction functor
JO  - Algebra and discrete mathematics
PY  - 2003
SP  - 95
EP  - 101
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2003_3_a6/
LA  - en
ID  - ADM_2003_3_a6
ER  - 
%0 Journal Article
%A Th. Theohari-Apostolidi
%A H. Vavatsoulas
%T On the separability of the restriction functor
%J Algebra and discrete mathematics
%D 2003
%P 95-101
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2003_3_a6/
%G en
%F ADM_2003_3_a6
Th. Theohari-Apostolidi; H. Vavatsoulas. On the separability of the restriction functor. Algebra and discrete mathematics, no. 3 (2003), pp. 95-101. http://geodesic.mathdoc.fr/item/ADM_2003_3_a6/