On large indecomposable modules, endo-wild representation type and right pure semisimple rings
Algebra and discrete mathematics, no. 2 (2003), pp. 93-118
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence of large indecomposable right $R$-modules over a right artinian ring $R$ is discussed in connection with the pure semisimplicity problem and the endo-wildness of the category ${\rm Mod}(R)$ of right $R$-modules. Some conjectures and open problems are presented.
Keywords:
Brauer–Thrall conjectures, pure semisimple rings, Kaplansky's test problem, endo-wild representation type, prinjective modules/.
@article{ADM_2003_2_a5,
author = {Daniel Simson},
title = {On large indecomposable modules, endo-wild representation type and right pure semisimple rings},
journal = {Algebra and discrete mathematics},
pages = {93--118},
publisher = {mathdoc},
number = {2},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2003_2_a5/}
}
Daniel Simson. On large indecomposable modules, endo-wild representation type and right pure semisimple rings. Algebra and discrete mathematics, no. 2 (2003), pp. 93-118. http://geodesic.mathdoc.fr/item/ADM_2003_2_a5/