Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets.~II
Algebra and discrete mathematics, no. 2 (2003), pp. 47-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main concept of this part of the paper is that of a reduced exponent matrix and its quiver, which is strongly connected and simply laced. We give the description of quivers of reduced Gorenstein exponent matrices whose number $s$ of vertices is at most 7. For $2\leq s\leq 5$ we have that all adjacency matrices of such quivers are multiples of doubly stochastic matrices. We prove that for any permutation $\sigma$ on $n$ letters without fixed elements there exists a reduced Gorenstein tiled order $\Lambda$ with $\sigma(\mathcal E)=\sigma$. We show that for any positive integer $k$ there exists a Gorenstein tiled order $\Lambda_{k}$ with $in\Lambda_{k}=k$. The adjacency matrix of any cyclic Gorenstein order $\Lambda$ is a linear combination of powers of a permutation matrix $P_{\sigma}$ with non-negative coefficients, where $\sigma= \sigma(\Lambda)$. If $A$ is a noetherian prime semiperfect semidistributive ring of a finite global dimension, then $Q(A)$ be a strongly connected simply laced quiver which has no loops.
Keywords: semiperfect ring, exponent matrix, tiled order, quiver, partially ordered set, index of semiperfect ring, Gorenstein tiled order
Mots-clés : global dimension, transition matrix.
@article{ADM_2003_2_a3,
     author = {Zh. T. Chernousova and M. A. Dokuchaev and M. A. Khibina and V. V. Kirichenko and S. G. Miroshnichenko and V. N. Zhuravlev},
     title = {Tiled orders over discrete valuation rings, finite {Markov} chains and partially ordered {sets.~II}},
     journal = {Algebra and discrete mathematics},
     pages = {47--86},
     publisher = {mathdoc},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2003_2_a3/}
}
TY  - JOUR
AU  - Zh. T. Chernousova
AU  - M. A. Dokuchaev
AU  - M. A. Khibina
AU  - V. V. Kirichenko
AU  - S. G. Miroshnichenko
AU  - V. N. Zhuravlev
TI  - Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets.~II
JO  - Algebra and discrete mathematics
PY  - 2003
SP  - 47
EP  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2003_2_a3/
LA  - en
ID  - ADM_2003_2_a3
ER  - 
%0 Journal Article
%A Zh. T. Chernousova
%A M. A. Dokuchaev
%A M. A. Khibina
%A V. V. Kirichenko
%A S. G. Miroshnichenko
%A V. N. Zhuravlev
%T Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets.~II
%J Algebra and discrete mathematics
%D 2003
%P 47-86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2003_2_a3/
%G en
%F ADM_2003_2_a3
Zh. T. Chernousova; M. A. Dokuchaev; M. A. Khibina; V. V. Kirichenko; S. G. Miroshnichenko; V. N. Zhuravlev. Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets.~II. Algebra and discrete mathematics, no. 2 (2003), pp. 47-86. http://geodesic.mathdoc.fr/item/ADM_2003_2_a3/