Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets.~II
Algebra and discrete mathematics, no. 2 (2003), pp. 47-86
Voir la notice de l'article provenant de la source Math-Net.Ru
The main concept of this part of the paper is that of a reduced exponent matrix and its quiver, which is strongly connected and simply laced. We give the description of quivers of reduced Gorenstein exponent matrices whose number $s$ of vertices is at most 7. For $2\leq s\leq 5$ we have that all adjacency matrices of such quivers are multiples of doubly stochastic matrices. We prove that for any permutation $\sigma$ on $n$ letters without fixed elements there exists a reduced Gorenstein tiled order $\Lambda$ with $\sigma(\mathcal E)=\sigma$. We show that for any positive integer $k$ there exists a Gorenstein tiled order $\Lambda_{k}$ with $in\Lambda_{k}=k$. The adjacency matrix of any cyclic Gorenstein order $\Lambda$ is a linear combination of powers of a permutation matrix $P_{\sigma}$ with non-negative coefficients, where $\sigma= \sigma(\Lambda)$. If $A$ is a noetherian prime semiperfect semidistributive ring of a finite global dimension, then $Q(A)$ be a strongly connected simply laced quiver which has no loops.
Keywords:
semiperfect ring, exponent matrix, tiled order, quiver, partially ordered set, index of semiperfect ring, Gorenstein tiled order
Mots-clés : global dimension, transition matrix.
Mots-clés : global dimension, transition matrix.
@article{ADM_2003_2_a3,
author = {Zh. T. Chernousova and M. A. Dokuchaev and M. A. Khibina and V. V. Kirichenko and S. G. Miroshnichenko and V. N. Zhuravlev},
title = {Tiled orders over discrete valuation rings, finite {Markov} chains and partially ordered {sets.~II}},
journal = {Algebra and discrete mathematics},
pages = {47--86},
publisher = {mathdoc},
number = {2},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2003_2_a3/}
}
TY - JOUR AU - Zh. T. Chernousova AU - M. A. Dokuchaev AU - M. A. Khibina AU - V. V. Kirichenko AU - S. G. Miroshnichenko AU - V. N. Zhuravlev TI - Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets.~II JO - Algebra and discrete mathematics PY - 2003 SP - 47 EP - 86 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2003_2_a3/ LA - en ID - ADM_2003_2_a3 ER -
%0 Journal Article %A Zh. T. Chernousova %A M. A. Dokuchaev %A M. A. Khibina %A V. V. Kirichenko %A S. G. Miroshnichenko %A V. N. Zhuravlev %T Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets.~II %J Algebra and discrete mathematics %D 2003 %P 47-86 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2003_2_a3/ %G en %F ADM_2003_2_a3
Zh. T. Chernousova; M. A. Dokuchaev; M. A. Khibina; V. V. Kirichenko; S. G. Miroshnichenko; V. N. Zhuravlev. Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets.~II. Algebra and discrete mathematics, no. 2 (2003), pp. 47-86. http://geodesic.mathdoc.fr/item/ADM_2003_2_a3/