On check character systems over quasigroups and loops
Algebra and discrete mathematics, no. 2 (2003), pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we study check character systems that is error detecting codes, which arise by appending a check digit $a_n$ to every word $a_1a_2\dots a_{n-1}: a_1a_2\dots a_{n-1}\rightarrow a_1a_2\dots a_{n-1}a_n$ with the check formula $ (\dots((a_1\cdot\delta a_2)\cdot \delta^2a_3)\dots)\cdot \delta^{n-2}a_{n-1})\cdot\delta^{n-1}a_n=c$, where $Q(\cdot)$ is a quasigroup or a loop, $\delta$ is a permutation of $Q$, $c\in Q$. We consider detection sets for such errors as transpositions $(ab\rightarrow ba)$, jump transpositions $(acb\rightarrow bca)$, twin errors $(aa\rightarrow bb)$ and jump twin errors $(aca\rightarrow bcb)$ and an automorphism equivalence (a weak equivalence) for a check character systems over the same quasigroup (over the same loop). Such equivalent systems detect the same percentage (rate) of the considered error types.
Keywords: loop, check character system
Mots-clés : quasigroup, group, automorphism, code.
@article{ADM_2003_2_a0,
     author = {G. B. Belyavskaya},
     title = {On check character systems over quasigroups and loops},
     journal = {Algebra and discrete mathematics},
     pages = {1--13},
     publisher = {mathdoc},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2003_2_a0/}
}
TY  - JOUR
AU  - G. B. Belyavskaya
TI  - On check character systems over quasigroups and loops
JO  - Algebra and discrete mathematics
PY  - 2003
SP  - 1
EP  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2003_2_a0/
LA  - en
ID  - ADM_2003_2_a0
ER  - 
%0 Journal Article
%A G. B. Belyavskaya
%T On check character systems over quasigroups and loops
%J Algebra and discrete mathematics
%D 2003
%P 1-13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2003_2_a0/
%G en
%F ADM_2003_2_a0
G. B. Belyavskaya. On check character systems over quasigroups and loops. Algebra and discrete mathematics, no. 2 (2003), pp. 1-13. http://geodesic.mathdoc.fr/item/ADM_2003_2_a0/