On intersections of normal subgroups in free groups
Algebra and discrete mathematics, no. 1 (2003), pp. 36-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $N_1$ (respectively $N_2$) be a normal closure of a set $R_1=\{ u_i\}$ (respectively $R_2=\{v_j\}$) of cyclically reduced words of the free group $F(A)$. In the paper we consider geometric conditions on $R_1$ and $R_2$ for $N_1\cap N_2=[N_1,N_2]$. In particular, it turns out that if a presentation $$ is aspherical (for example, it satisfies small cancellation conditions $C(p)\ T(q)$ with $1/p+1/q=1/2$), then the equality $N_1\cap N_2=[N_1,N_2]$ holds.
Keywords: normal closure of words in free groups, presentations of groups, pictures, mutual commutants, intersection of groups, aspherisity, small cancellation conditions.
@article{ADM_2003_1_a4,
     author = {O. V. Kulikova},
     title = {On intersections of normal subgroups in free groups},
     journal = {Algebra and discrete mathematics},
     pages = {36--67},
     publisher = {mathdoc},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2003_1_a4/}
}
TY  - JOUR
AU  - O. V. Kulikova
TI  - On intersections of normal subgroups in free groups
JO  - Algebra and discrete mathematics
PY  - 2003
SP  - 36
EP  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2003_1_a4/
LA  - en
ID  - ADM_2003_1_a4
ER  - 
%0 Journal Article
%A O. V. Kulikova
%T On intersections of normal subgroups in free groups
%J Algebra and discrete mathematics
%D 2003
%P 36-67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2003_1_a4/
%G en
%F ADM_2003_1_a4
O. V. Kulikova. On intersections of normal subgroups in free groups. Algebra and discrete mathematics, no. 1 (2003), pp. 36-67. http://geodesic.mathdoc.fr/item/ADM_2003_1_a4/