On groups of finite normal rank
Algebra and discrete mathematics, no. 1 (2002), pp. 64-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article the investigation of groups of finite normal rank is continued. The finiteness of normal rank of nonabelian $p$-group $G$ is proved where $G$ has a normal elementary abelian $p$-subgroup $A$ for which quotient group $G/A$ is isomorphic to the direct product of finite number of quasicyclic $p$-groups.
@article{ADM_2002_1_a3,
     author = {O. Yu. Dashkova},
     title = {On groups of finite normal rank},
     journal = {Algebra and discrete mathematics},
     pages = {64--68},
     publisher = {mathdoc},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2002_1_a3/}
}
TY  - JOUR
AU  - O. Yu. Dashkova
TI  - On groups of finite normal rank
JO  - Algebra and discrete mathematics
PY  - 2002
SP  - 64
EP  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2002_1_a3/
LA  - en
ID  - ADM_2002_1_a3
ER  - 
%0 Journal Article
%A O. Yu. Dashkova
%T On groups of finite normal rank
%J Algebra and discrete mathematics
%D 2002
%P 64-68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2002_1_a3/
%G en
%F ADM_2002_1_a3
O. Yu. Dashkova. On groups of finite normal rank. Algebra and discrete mathematics, no. 1 (2002), pp. 64-68. http://geodesic.mathdoc.fr/item/ADM_2002_1_a3/