On finite algebras with probability limit laws
Algebra i analiz, Tome 34 (2022) no. 5, pp. 211-234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algebraic system has a limit probability law if the distributions of the values of terms composed of independent identically distributed random variables tend to a certain limit (limit law) as the number of variables in the term increases. For algebraic systems on finite sets, it is shown that under some additional geometric conditions on the set of distributions of term values, the presence of a limit law restricts significantly the set of possible operations of the algebraic system in question. In particular, a system with a limit distribution without zero components must consist of quasigroup operations (of arbitrary arity), and the limit distribution itself must be uniform. Sufficient conditions for the existence of a limit probability law in an algebraic system, partially coinciding with the necessary ones, are also proved.
Keywords: finite algebra, random variable, Limit law
Mots-clés : quasigroup.
@article{AA_2022_34_5_a6,
     author = {A. D. Yashunskii},
     title = {On finite algebras with probability limit laws},
     journal = {Algebra i analiz},
     pages = {211--234},
     year = {2022},
     volume = {34},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_5_a6/}
}
TY  - JOUR
AU  - A. D. Yashunskii
TI  - On finite algebras with probability limit laws
JO  - Algebra i analiz
PY  - 2022
SP  - 211
EP  - 234
VL  - 34
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_5_a6/
LA  - ru
ID  - AA_2022_34_5_a6
ER  - 
%0 Journal Article
%A A. D. Yashunskii
%T On finite algebras with probability limit laws
%J Algebra i analiz
%D 2022
%P 211-234
%V 34
%N 5
%U http://geodesic.mathdoc.fr/item/AA_2022_34_5_a6/
%G ru
%F AA_2022_34_5_a6
A. D. Yashunskii. On finite algebras with probability limit laws. Algebra i analiz, Tome 34 (2022) no. 5, pp. 211-234. http://geodesic.mathdoc.fr/item/AA_2022_34_5_a6/

[1] Barnes G. R., Cerrito P. B., Levi I., “Random walks on finite semigroups”, J. Appl. Probab., 35:4 (1998), 824–832 | DOI | MR | Zbl

[2] Belousov V. D., $n$-Arnye kvazigruppy, Shtiintsa, Kishinev, 1972

[3] Grenander U., Probabilities on algebraic structures, John Wiley Sons Inc., New York, 1963 | MR | Zbl

[4] Lee D., Bruck J., “Generating probability distributions using multivalued stochastic relay circuits”, Proc. IEEE Int. Symp. on Information Theory, ISIT 2011, 2011, 308–312

[5] Markovski S., Gligoroski D., Bakeva V., “Quasigroup string processing. I”, Makedon. Acad. Nauk. Umet. Oddel. Mat.-Tehn. Nauk. Prilozi, 20:1-2 (1999), 13–28 | MR

[6] Martin-Löf P., “Probability theory on discrete semigroups”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 4 (1965), 78–102 | DOI | MR

[7] Salimov F. I., “Ob odnom semeistve algebr raspredelenii”, Izv. vuzov. Mat., 1988, no. 7, 64–72

[8] Saloff-Coste L., “Random walks on finite groups”, Probability on discrete structures, Encyclopaedia Math. Sci., 110, Springer, Berlin, 2004, 263–346 | DOI | MR | Zbl

[9] Vorobev N. N., “Slozhenie nezavisimykh sluchainykh velichin na konechnykh abelevykh gruppakh”, Mat. sb., 34:1 (1954), 89–126 | Zbl

[10] Yashunskii A. D., “O preobrazovaniyakh raspredelenii veroyatnostei bespovtornymi kvazigruppovymi formulami”, Diskret. mat., 25:2 (2013), 149–159 | MR | Zbl

[11] Yashunskii A. D., “Algebry bernullievskikh raspredelenii s edinstvennoi predelnoi tochkoi”, Vestn. Mosk. un-ta. Ser. 1. Mat., mekh., 2019, no. 4, 3–9 | MR | Zbl

[12] Yashunsky A. D., “Clone-induced approximation algebras of Bernoulli distributions”, Algebra Universalis, 80 (2019), 5, 1–16 | DOI | MR | Zbl