Mots-clés : Martingale transformation
@article{AA_2022_34_5_a5,
author = {M. I. Novikov},
title = {Sufficient conditions for the minimality of concave functions},
journal = {Algebra i analiz},
pages = {173--210},
year = {2022},
volume = {34},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2022_34_5_a5/}
}
M. I. Novikov. Sufficient conditions for the minimality of concave functions. Algebra i analiz, Tome 34 (2022) no. 5, pp. 173-210. http://geodesic.mathdoc.fr/item/AA_2022_34_5_a5/
[1] Burkholder D. L., “Boundary value problems and sharp inequalities for martingale transforms”, Ann. Probab., 12:3 (1984), 647–702 | DOI | MR | Zbl
[2] Dacorogna B., Direct methods in the calculus of variations, Appl. Math. Sci., 78, Second ed., Springer, New York, 2008 | MR | Zbl
[3] Ivanisvili P., Stolyarov D. M., Vasyunin V. I., Zatitskiy, P. B., “Bellman function for extremal problems in BMO II: Evolution”, Mem. Amer. Math. Soc., 255, no. 1220, 2018, 1–148 | MR
[4] Kazaniecki K., Stolyarov D. M., Wojciechowski M., “Anisotropic Ornstein noninequalities”, Anal. PDE, 10:2 (2017), 351–366 | DOI | MR | Zbl
[5] Kirchheim B., Kristensen J., “On rank one convex functions that are homogeneous of degree one”, Arch. Ration. Mech. Anal., 221:1 (2016), 527–558 | DOI | MR | Zbl
[6] Kurka O., Pokorný D., “Notes on the trace problem for separately convex functions”, ESAIM Control Optim. Calc. Var., 23:4 (2017), 1617–1648 | DOI | MR | Zbl
[7] Osȩckowski A., Sharp martingale and semimartingale inequalities, Inst. Mat. Polsk. Akad. Nauk. Monogr. Mat. (New Ser.), 72, Birkhäuser/Springer Basel AG, Basel, 2012 | MR