The Cauchy problem for a nonlinear Hirota equation in the class of periodic infinite-zone functions
Algebra i analiz, Tome 34 (2022) no. 5, pp. 139-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of inverse spectral problem is used to integrate the nonlinear Hirota equation in the class of periodic infinite-zone functions. The evolution of spectral data is introduced for the periodic Dirac operator whose coefficient is the solution of the nonlinear Hirota equation. The solvability of the Cauchy problem for an infinite system of Dubrovin differential equations in the class of five times continuously differentiable periodic infinite-zone functions is shown. In addition, it is proved that if the initial function is real-analytic and $\pi$-periodic, then the solution of the Cauchy problem for the Hirota equation is also a real-analytic function of the variable $x$; next, if the number $\pi/2$ is a period (antiperiod) of the initial function, then the number $\pi/2$ is a period (antiperiod) in the variable $x$ for the solution of the Cauchy problem for the Hirota equation.
Mots-clés : Hirota equation
Keywords: Dirac operator, Spectral data, Dubrovin system, trace formulas.
@article{AA_2022_34_5_a4,
     author = {G. A. Mannonov and A. B. Khasanov},
     title = {The {Cauchy} problem for a nonlinear {Hirota} equation in the class of periodic infinite-zone functions},
     journal = {Algebra i analiz},
     pages = {139--172},
     year = {2022},
     volume = {34},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_5_a4/}
}
TY  - JOUR
AU  - G. A. Mannonov
AU  - A. B. Khasanov
TI  - The Cauchy problem for a nonlinear Hirota equation in the class of periodic infinite-zone functions
JO  - Algebra i analiz
PY  - 2022
SP  - 139
EP  - 172
VL  - 34
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_5_a4/
LA  - ru
ID  - AA_2022_34_5_a4
ER  - 
%0 Journal Article
%A G. A. Mannonov
%A A. B. Khasanov
%T The Cauchy problem for a nonlinear Hirota equation in the class of periodic infinite-zone functions
%J Algebra i analiz
%D 2022
%P 139-172
%V 34
%N 5
%U http://geodesic.mathdoc.fr/item/AA_2022_34_5_a4/
%G ru
%F AA_2022_34_5_a4
G. A. Mannonov; A. B. Khasanov. The Cauchy problem for a nonlinear Hirota equation in the class of periodic infinite-zone functions. Algebra i analiz, Tome 34 (2022) no. 5, pp. 139-172. http://geodesic.mathdoc.fr/item/AA_2022_34_5_a4/

[1] Gardner C., Green I., Kruskal M., Miura R., “A method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1098 | DOI | MR

[2] Faddeev L. D., “Svoistva S-matritsy odnomernogo uravneniya Shredingera”, Tr. Mat. in-ta AN SSSR, 73, 1964, 314–336 | Zbl

[3] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[4] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR

[5] Lax P D., “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl

[6] Zakharov V. E., Shabat A. B., “Tochnaya teoriya dvumernoi samofokusirovki v odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, Zh. eksperim. teor. fiz., 61:1 (1971), 118–134 | MR

[7] Wadati M., “The exact solution of the modified Korteweg–de Vries equation”, J. Phys. Soc. Japn., 32:6 (1972), 44–47 | DOI | MR

[8] Hirota R., “Exact envelop-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14 (1973), 805–809 | DOI | MR | Zbl

[9] Zakharov V. E., Takhtadzhyan L. A., Faddeev L. D., “Polnoe opisanie reshenii “Sin-Gordon” uravneniya”, Dokl. AN SSSR, 219:6 (1974), 1334–1337 | Zbl

[10] Ablowitz M. J., Kaup D. J., Newell A. C., Segur H., “Method for solving the sine-Gordon equation”, Phys. Rev. Lett., 30:25 (1973), 1262–1264 | DOI | MR

[11] Frolov I. S., “Obratnaya zadacha rasseyaniya dlya sistemy Diraka na vsei osi”, Dokl. AN SSSR, 207:1 (1972), 44–47 | Zbl

[12] Nizhnik L. P., Fam Lou Vu, “Obratnaya zadacha rasseyaniya na poluosi s nesamosopryazhennoi potentsialnoi matritsei”, Ukr. mat. zh., 26:4 (1974), 469–485

[13] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR

[14] Khasanov A. B., “Obratnaya zadacha teorii rasseyaniya dlya sistemy dvukh nesamosopryazhennykh differentsialnykh uravnenii pervogo poryadka”, Dokl. AN SSSR, 277:3 (1984), 559–562 | MR | Zbl

[15] Tao Y., “Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation”, Phys. Rev. E, 85 (2012), 02660 | DOI

[16] Shaikhova G. N., Kalykbay Y. S., “Exact solutions of the Hirota equation using the sine-cosine method”, Vestn. Yuzhno-Ur. un-ta. Ser. Mat. Mekh. Fiz., 13:3 (2021), 47–52 | MR | Zbl

[17] Khasanov A. B., Khoitmetov U. A., “Ob integrirovanii uravneniya Kortevega–de Friza v klasse bystroubyvayuschikh kompleksnoznachnykh funktsii”, Izv. vuzov. Mat., 2018, no. 3, 79–90 | Zbl

[18] Khasanov A. B., Khoitmetov U. A., “Integrirovanie obschego nagruzhennogo uravneniya Kortevega–de Friza s istochnikom v klasse bystroubyvayuschikh kompleksnoznachnykh funktsii”, Izv. vuzov. Mat., 2021, no. 7, 52–66 | Zbl

[19] Khasanov A. B., Hoitmetov U. A., “On integration of the loaded mKdV equation in the class of rapidly decreasing functions”, Izv. Irkutsk. gos. un-ta. Ser. Mat., 38 (2021), 19–35 | MR | Zbl

[20] Khasanov A. B., Urazboev G. U., “Ob integrirovanii uravneniya sine-Gardon s samosoglasovannym istochnikom integralnogo tipa v sluchae kratnykh sobstvennykh znachenii”, Izv. vuzov. Mat., 2009, no. 3, 55–66 | MR | Zbl

[21] Khasanov A. B., Urazboev G. U., “On the sine-Gardon equation with a self-consistent source of the integral type”, Zh. mat. fiz., anal., geom., 2:3 (2006), 287–298 | MR | Zbl

[22] Its A. R., Matveev V. B., “Operatory Shredingera s konechnozonnym spektrom i $N$-solitonnye resheniya uravneniya Kortevega-de Friza”, Teor. mat. fiz., 23:1 (1975), 51–68 | MR

[23] Dubrovin B. A., Novikov S. P., “Periodicheskii i uslovno periodicheskii analogi mnogosolitonnykh reshenii uravneniya Kortevega–de Friza”, Zh. eksperim. teor. fiz., 67:12 (1974), 2131–2143 | MR

[24] Its A. R., “Obrashenie giperellipticheskikh integralov i integrirovanie nelineinykh differentsialnykh uravnenii”, Vestn. Leningr. un-ta. Ser. mat., mekh., astronom., 1976, no. 2, 39–46 | Zbl

[25] Its A. R., Kotlyarov V. P., “Yavnye formuly dlya reshenii nelineinogo uravneniya Shredingera”, Dokl. AN USSR. Ser. A, 1976, no. 11, 965–968 | Zbl

[26] Smirnov A. O., “Ellipticheskie resheniya nelineinogo uravneniya Shredingera i modifitsirovannogo uravneniya Kortevega–de Friza”, Mat. sb., 185:8 (1994), 103–114 | Zbl

[27] Matveev V. B., Smirnov A. O., “Resheniya tipa ‘ volnubiits’' uravnenii ierarkhii Ablovitsa–Kaupa–Nyuella–Sigura: edinyi podkhod”, Teor. mat. fiz., 186:2 (2016), 191–220 | MR | Zbl

[28] Matveev V. B., Smirnov A. O., “Dvukhfaznye periodicheskie resheniya uravnenii iz AKNS ierarkhii”, Zap. nauch. semin. POMI, 473, 2018, 205–227 | MR

[29] Matveev V. B., Smirnov A. O., “Mnogofaznye resheniya nelokalnykh simmetrichnykh reduktsii uravnenii ierarkhii AKNS: obschii analiz i prosteishie primery”, Teor. mat. fiz., 204:3 (2020), 383–395 | MR | Zbl

[30] Mitropolskii Yu. A, Bogolyubov N. N. (ml.), Prikarpatskii A. K., Samoilenko V. G., Integriruemye dinamicheskie sistemy: spektralnye i differentsialno-geometricheskie aspekty, Naukova dumka, Kiev, 1987

[31] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[32] Zamonov M. Z., Khasanov A. B., “Razreshimost obratnoi zadachi dlya sistemy Diraka na osi”, Vestn. Mosk. gos. un-ta Ser. mat. mekh., 1985, no. 6, 3–7 | MR

[33] Dubrovin B. A., “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza v klasse konechnozonnykh potentsialov”, Funktsional. anal. i ego pril., 9:3 (1975), 41–51 | MR | Zbl

[34] Matveev V. B., “$30$ years of finite-gap integration theory”, Phil. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366:1867 (2008), 837–875 | MR | Zbl

[35] Grinevich P. G., Taimanov I. A., “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Geometry, Topology and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 224, Amer. Math. Soc., Providence, RI,, 2008, 125–138 | MR | Zbl

[36] Khasanov A. B., Khasanov M. M., “Integrirovanie nelineinogo uravneniya Shredingera s dopolnitelnym chlenom v klasse periodicheskikh funktsii”, Teor. mat. fiz., 199:1 (2019), 60–68 | MR | Zbl

[37] Khasanov A. B., Matyakubov M. M., “Integrirovanie nelineinogo uravneniya Kortevega–de Friza s dopolnitelnym chlenom”, Teor. mat. fiz., 203:2 (2020), 192–204 | MR | Zbl

[38] Khasanov A. B., Khasanov T. G., “Zadacha Koshi dlya uravneniya Kortevega–de Friza v klasse periodicheskikh beskonechnozonnykh funktsii”, Zap. nauch. semin. POMI, 506, 2021, 258–279

[39] Khasanov A. B., Allanazarova T. Zh., “O modifitsirovannom uravnenii Kortevega–de Friza s nagruzhennym chlenom”, Ukr. mat. zh., 73:11 (2021), 1541–1563

[40] Domrin A. V., “Zamechaniya o lokalnom variante metoda obratnoi zadachi rasseyaniya”, Tr. Mat. in-ta RAN, 253, 2006, 46–60 | MR | Zbl

[41] Domrin A. V., “O veschestvenno-analiticheskikh resheniyakh nelineinogo uravneniya Shredingera”, Tr. Mosk. mat. ob-va, 75, no. 2, 2014, 205–218 | Zbl

[42] Ince E. L., Ordinary differential equations, Dover Publ., New York, 1956 | MR

[43] Dzhakov P. B., Mityagin B. S., “Zony neustoichivosti odnomernykh periodicheskikh operatorov Shredingera i Diraka”, Uspekhi mat. nauk, 61(370):4 (2006), 77–182 | MR | Zbl

[44] Levitan B. M., Sargsyan I. S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR

[45] Misyura T. V., “Kharakteristika spektrov periodicheskoi kraevykh zadach, porozhdaemykh operatsiei Diraka I”, Teoriya funktsiei, funktsionalnyi analiz i ikh prilozheniya, 30 (1978), 90–101 ; “Характеристика спектров периодической и антипериодической краевых задач, порождаемых операцией Дирака. II”, Теория функцией, функциональный анализ и их приложения, 31 (1979), 102–109 | MR | Zbl | MR | Zbl

[46] Khasanov A. B., Yakhshimuratov A. B., “Analog obratnoi teoremy G. Borga dlya operatora Diraka”, Uzb. mat. zh., 3-4 (2000), 40–46 | Zbl

[47] Khasanov A. B., Ibragimov A. M., “Ob obratnoi zadache dlya operatora Diraka s periodicheskim potentsialom”, Uzb. mat. zh., 3-4 (2001), 48–55

[48] Currie S., Roth T., Watson B., “Borg's periodicity theorems for first-order selfadjoint systems with complex potentials”, Proc. Edinb. Math. Soc. (2), 60:3 (2017), 615–633 | DOI | MR | Zbl

[49] Stankevich I. V., “Ob odnoi obratnoi zadache spektralnogo analiza dlya uravneniya Khilla”, Dokl. AN SSSR, 192:1 (1970), 34–37 | Zbl

[50] Trubowitz E., “The inverse problem for periodic potentials”, Comm. Pure. Appl. Math., 30:3 (1977), 321–337 | DOI | MR | Zbl

[51] Khasanov A. B., Yakhshimuratov A. B., “Obratnaya zadacha na poluosi dlya operatora Shturma–Liuvillya s periodicheskim potentsialom”, Differ. uravneniya, 51:1 (2015), 24–33 | Zbl

[52] Borg G., “Eine Umkehrung der Sturm–Liouvillschen Eigenwertaufgable. Bestimmung der Differentialgleichung durch die Eigenwete”, Acta Math., 78 (1946), 1–96 | DOI | MR | Zbl

[53] Akhiezer N. I., “Kontinualnyi analog ortogonalnykh mnogochlenov na sisteme intervalov”, Dokl. AN SSSR, 144:2 (1961), 263–266

[54] Flaschka H., “On the inverse problem for Hill's operator”, Arch. Rational Mech. Anal., 59:4 (1975), 293–309 | DOI | MR | Zbl

[55] Yakhshimuratov A. B., “Integrirovanie nelineinoi sistemy Shredingera vysshego poryadka s samosoglasovannym istochnikom v klasse periodicheskikh funktsii”, Teor. mat. fiz., 202:2 (2020), 157–169 | MR | Zbl

[56] Bättig D., Grebert B., Guillot J. C., Kappeler T., “Folation of phase space for the cubic non-linear Schrödinger equation”, Compos. Math., 85:2 (1993), 163–199 | MR | Zbl

[57] Grebert B, Guillot J. C., “Gap of one dimensional periodic AKNS systems”, Forum Math., 5:5 (1993), 459–504 | DOI | MR | Zbl

[58] Korotayev E., “Inverse problem and estimates for periodic Zakharov–Shabat systems”, J. Reine Angew. Math., 583 (2005), 87–115 | DOI | MR

[59] Djakov P, Miyagin B., “Instability zanes of a periodic $1$ D Dirac operator and smoothness of its potential”, Comm. Math. Phys., 259:1 (2005), 139–183 | DOI | MR | Zbl

[60] Korotayev E., Mokeev D., “Dubrovin equation for periodic Dirac operator on the half-line”, Appl. Anal., 101:1 (2022), 337–365 | DOI | MR

[61] Ibragimov A. M., Nekotorye voprosy teorii obratnykh spektralnykh zadach dlya operatora Diraka s periodicheskim potentsialom, Diss. na soisk. uch. step. kand. fiz.-mat. n., Samarkand, 2001

[62] McKean H., Trubowitz E., “Hill's operator and hyperelliptic function theory in the presence of infinitely many branchpoints”, Comm. Pure Appl. Math., 29:2 (1976), 143–226 | DOI | MR | Zbl

[63] McKean H., Trubowitz E., “Hill's surfaces and their theta functions”, Bull. Amer. Math. Soc., 84 (1978), 1042–1085 | DOI | MR | Zbl

[64] Schmidt M. U., Integrable systems and Riemann surfaces of infinite genus, Mem. AMS, 122, no. 581, Amer. Math. Soc., 1996, 111 pp. | MR