A representation of analytic functions in bounded convex domains in the complex plane
Algebra i analiz, Tome 34 (2022) no. 5, pp. 75-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Entire functions of exponential type and regular growth are treated. Exceptional sets are investigated outside which these functions admit lower estimates that coincide asymptotically with upper estimates. An explicit method of constructing an exceptional set is indicated; the resulting set consists of disks with centers at zeros of the entire function in question. The concept of a properly balanced set is introduced, which is a natural generalization of the concept of a regular set by B. Levin. It is proved that of the zero set of an entire function is properly balanced if and only if every function, analytic in the interior of the conjugate diagram of the entire function in question and continuous up to the boundary is representable by a series of exponential monomials whose exponents are zeros of this entire function. This result generalizes the classical result of A. F. Leontiev on the representation of analytic functions in a convex domain to the case of where the entire function has multiple zeros.
Keywords: analytic function, series of exponentials, Regular growth, entire function.
Mots-clés : quasipolynomial
@article{AA_2022_34_5_a3,
     author = {A. S. Krivosheev and A. I. Rafikov},
     title = {A representation of analytic functions in bounded convex domains in the complex plane},
     journal = {Algebra i analiz},
     pages = {75--138},
     year = {2022},
     volume = {34},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_5_a3/}
}
TY  - JOUR
AU  - A. S. Krivosheev
AU  - A. I. Rafikov
TI  - A representation of analytic functions in bounded convex domains in the complex plane
JO  - Algebra i analiz
PY  - 2022
SP  - 75
EP  - 138
VL  - 34
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_5_a3/
LA  - ru
ID  - AA_2022_34_5_a3
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%A A. I. Rafikov
%T A representation of analytic functions in bounded convex domains in the complex plane
%J Algebra i analiz
%D 2022
%P 75-138
%V 34
%N 5
%U http://geodesic.mathdoc.fr/item/AA_2022_34_5_a3/
%G ru
%F AA_2022_34_5_a3
A. S. Krivosheev; A. I. Rafikov. A representation of analytic functions in bounded convex domains in the complex plane. Algebra i analiz, Tome 34 (2022) no. 5, pp. 75-138. http://geodesic.mathdoc.fr/item/AA_2022_34_5_a3/

[1] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[2] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[3] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR

[4] Abdulnagimov A. I., Krivosheev A. S., “Predstavlenie analiticheskikh funktsii”, Ufimsk. mat. zh., 8:4 (2016), 3–23 | MR | Zbl

[5] Krivosheev A. S., “Fundamentalnyi printsip dlya invariantnykh podprostranstv v vypuklykh oblastyakh”, Izv. RAN. Ser. mat., 68:2 (2004), 71–136 | MR | Zbl

[6] Krivosheev A. S., Krivosheeva O. A., “Bazis v invariantnom podprostranstve analiticheskikh funktsii”, Mat. sb., 204:12 (2013), 49–104 | MR | Zbl

[7] Krivosheev A. S., Krivosheeva O. A., “Bazis v invariantnom podprostranstve tselykh funktsii”, Algebra i analiz, 27:2 (2015), 132–195 | MR

[8] Abanin A. V., “Raspredelenie pokazatelei predstavlyayuschikh sistem obobschennykh eksponent”, Mat. zametki, 49:2 (1991), 3–13 | MR

[9] Napalkov V. V., Komarov A. V., “O razlozhenii analiticheskikh funktsii v ryad po elementarnym resheniyam uravneniya svertki”, Mat. sb., 181:4 (1990), 556–563 | Zbl

[10] Krivosheeva O. A., “Osobye tochki summy ryada eksponentsialnykh monomov na granitse oblasti skhodimosti”, Algebra i analiz, 23:2 (2011), 162–205 | MR

[11] Leontev A. F., Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980 | MR

[12] Krivosheeva O. A., “Oblast skhodimosti ryadov eksponentsialnykh monomov”, Ufimsk. mat. zh., 3:2 (2011), 43–56 | Zbl

[13] Krivosheev A. S., “Bazisy “po otnositelno malym gruppam””, Ufimsk. mat. zh., 2:2 (2010), 67–89 | Zbl

[14] Krivosheev A. S., “Pochti eksponentsialnyi bazis”, Ufimsk. mat. zh., 2:1 (2010), 87–96 | Zbl

[15] Krivosheev A. S., “Pochti eksponentsialnaya posledovatelnost eksponentsialnykh mnogochlenov”, Ufimsk. mat. zh., 4:1 (2012), 88–106

[16] Krivosheeva O. A., “Oblast skhodimosti ryadov eksponentsialnykh mnogochlenov”, Ufimsk. mat. zh., 5:4 (2013), 84–90 | MR

[17] Krasichkov-Ternovskii I. F., “Odna geometricheskaya lemma, poleznaya v teorii tselykh funktsii, i teoremy tipa Levinsona”, Mat. zametki, 24:4 (1978), 531–546 | MR | Zbl