@article{AA_2022_34_5_a2,
author = {D. V. Korikov},
title = {On the electric impedance tomography problem for nonorientable surfaces with internal holes},
journal = {Algebra i analiz},
pages = {53--74},
year = {2022},
volume = {34},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2022_34_5_a2/}
}
D. V. Korikov. On the electric impedance tomography problem for nonorientable surfaces with internal holes. Algebra i analiz, Tome 34 (2022) no. 5, pp. 53-74. http://geodesic.mathdoc.fr/item/AA_2022_34_5_a2/
[1] Lassas M., Uhlmann G., “On determining a Riemannian manifold from the Dirichlet-to-Neumann map”, Ann. Sci. Ecolé. Norm. Sup. (4), 34:5 (2001), 771–787 | DOI | MR | Zbl
[2] Belishev M. I., “The Calderon problem for two-dimensional manifolds by the BC-method”, SIAM J. Math. Anal., 35:1 (2003), 172–182 | DOI | MR | Zbl
[3] Henkin G., Michel V., “On the explicit reconstruction of a Riemann surface from its Dirichlet–Neumann operator”, Geom. Funct. Anal., 17:1 (2007), 116–155 | DOI | MR | Zbl
[4] Belishev M. I., “Geometrization of rings as a method for solving inverse problems”, Sobolev Spaces in Math. III, Int. Math. Ser. (N.Y.), 10, Springer, New York, 2009, 5–24 | DOI | MR | Zbl
[5] Belishev M. I., “Granichnoe upravlenie i tomografiya rimanovykh mnogoobrazii (BC-metod)”, Uspekhi mat. nauk, 72:4 (2017), 3–66 | MR | Zbl
[6] Belishev M. I., Korikov D. V., “On determination of nonorientable surface via its Diriclet-to-Neumann operator”, SIAM J. Math. Anal., 53:5 (2021), 5278–5287 | DOI | MR | Zbl
[7] Badanin A. V., Belishev M. I., Korikov D. V., “Electric impedance tomography problem for surfaces with internal holes”, Inverse Problems, 37:10 (2021), 105013, 14 pp. | DOI | MR
[8] Alessandrini G., Rondi L., “Optimal stability for the inverse problem of multiple cavities”, J. Differential Equations, 176:2 (2001), 356–386 | DOI | MR | Zbl
[9] Alessandrini G., Beretta E., Rosset E., Vessella S., “Optimal stability for inverse elliptic boundary value problems with unknown boundaries”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29:4 (2000), 755–806 | MR | Zbl
[10] Lee J., Introduction to smooth manifolds, Grad. Texts in Math., 218, Springer-Verlag, New York, 2013 | MR | Zbl
[11] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988
[12] Gamelin T. W., Uniform algebras, AMS Chelsea Publ., Amer. Math. Soc., Providence, RI, 2005
[13] Royden H. I., “Function algebras”, Bull. Amer. Math. Soc., 69:3 (1963), 281–298 | DOI | MR | Zbl
[14] Chirka E. M., “Rimanovy poverkhnosti”, Lekts. kursy NOTs, 2006, 3–105 | MR
[15] Forster O., Rimanovy poverkhnosti, Mir, M., 1980
[16] Miranda R., Algebraic curves and Riemann surfaces, Grad. Texts in Math., 5, Amer. Math. Soc., Providence, RI, 1995 | MR | Zbl
[17] Schwarz G., Hodge decomposition — a method for solving boundary value problems, Lecture Notes in Math., 1607, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl