On the electric impedance tomography problem for nonorientable surfaces with internal holes
Algebra i analiz, Tome 34 (2022) no. 5, pp. 53-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(M,g)$ be a compact smooth (generally speaking, not necessarily orientable) surface, and let $\Gamma_{0},\dots,\Gamma_{m-1}$ be the components of the boundary of $M$. Let $u=u^{f}(x)$ be the solution of te following problem: $\Delta_{g}u=0$ in $M$, $u|_{\Gamma_{0}}=f$, $u|_{\Gamma_{j}}=0$, $j=1,\dots,m'$, $\partial_{\nu}u|_{\Gamma_{j}}=0$, $j=m'+1,\dots,m-1$, where $\nu$ is the outward normal. With this problem, we associate the DN-operator $\Lambda\colon f\mapsto \partial_{\nu}u^{f}|_{\Gamma_{0}}$. The task is to recover $M$ if $\Lambda$ is given. For solution, a version of the boundary comtrol method is applied. The principal role is played by the algebra $\mathfrak{A}$ of functions holomorphic on the orientable cover of $M$. We show that $\mathfrak{A}$ is determined by $\Lambda$ up to isometric isomorphism. The spectrum of $\mathfrak{A}$ makes it possible to construct a copy $M'$ of $M$. This copy is conformally equivalent to $M$, and its DN-operator coincides with $\Lambda$.
Keywords: electric impedance tomography of surfaces, algebraic version of the boundary control method.
@article{AA_2022_34_5_a2,
     author = {D. V. Korikov},
     title = {On the electric impedance tomography problem for nonorientable surfaces with internal holes},
     journal = {Algebra i analiz},
     pages = {53--74},
     year = {2022},
     volume = {34},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_5_a2/}
}
TY  - JOUR
AU  - D. V. Korikov
TI  - On the electric impedance tomography problem for nonorientable surfaces with internal holes
JO  - Algebra i analiz
PY  - 2022
SP  - 53
EP  - 74
VL  - 34
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_5_a2/
LA  - ru
ID  - AA_2022_34_5_a2
ER  - 
%0 Journal Article
%A D. V. Korikov
%T On the electric impedance tomography problem for nonorientable surfaces with internal holes
%J Algebra i analiz
%D 2022
%P 53-74
%V 34
%N 5
%U http://geodesic.mathdoc.fr/item/AA_2022_34_5_a2/
%G ru
%F AA_2022_34_5_a2
D. V. Korikov. On the electric impedance tomography problem for nonorientable surfaces with internal holes. Algebra i analiz, Tome 34 (2022) no. 5, pp. 53-74. http://geodesic.mathdoc.fr/item/AA_2022_34_5_a2/

[1] Lassas M., Uhlmann G., “On determining a Riemannian manifold from the Dirichlet-to-Neumann map”, Ann. Sci. Ecolé. Norm. Sup. (4), 34:5 (2001), 771–787 | DOI | MR | Zbl

[2] Belishev M. I., “The Calderon problem for two-dimensional manifolds by the BC-method”, SIAM J. Math. Anal., 35:1 (2003), 172–182 | DOI | MR | Zbl

[3] Henkin G., Michel V., “On the explicit reconstruction of a Riemann surface from its Dirichlet–Neumann operator”, Geom. Funct. Anal., 17:1 (2007), 116–155 | DOI | MR | Zbl

[4] Belishev M. I., “Geometrization of rings as a method for solving inverse problems”, Sobolev Spaces in Math. III, Int. Math. Ser. (N.Y.), 10, Springer, New York, 2009, 5–24 | DOI | MR | Zbl

[5] Belishev M. I., “Granichnoe upravlenie i tomografiya rimanovykh mnogoobrazii (BC-metod)”, Uspekhi mat. nauk, 72:4 (2017), 3–66 | MR | Zbl

[6] Belishev M. I., Korikov D. V., “On determination of nonorientable surface via its Diriclet-to-Neumann operator”, SIAM J. Math. Anal., 53:5 (2021), 5278–5287 | DOI | MR | Zbl

[7] Badanin A. V., Belishev M. I., Korikov D. V., “Electric impedance tomography problem for surfaces with internal holes”, Inverse Problems, 37:10 (2021), 105013, 14 pp. | DOI | MR

[8] Alessandrini G., Rondi L., “Optimal stability for the inverse problem of multiple cavities”, J. Differential Equations, 176:2 (2001), 356–386 | DOI | MR | Zbl

[9] Alessandrini G., Beretta E., Rosset E., Vessella S., “Optimal stability for inverse elliptic boundary value problems with unknown boundaries”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29:4 (2000), 755–806 | MR | Zbl

[10] Lee J., Introduction to smooth manifolds, Grad. Texts in Math., 218, Springer-Verlag, New York, 2013 | MR | Zbl

[11] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988

[12] Gamelin T. W., Uniform algebras, AMS Chelsea Publ., Amer. Math. Soc., Providence, RI, 2005

[13] Royden H. I., “Function algebras”, Bull. Amer. Math. Soc., 69:3 (1963), 281–298 | DOI | MR | Zbl

[14] Chirka E. M., “Rimanovy poverkhnosti”, Lekts. kursy NOTs, 2006, 3–105 | MR

[15] Forster O., Rimanovy poverkhnosti, Mir, M., 1980

[16] Miranda R., Algebraic curves and Riemann surfaces, Grad. Texts in Math., 5, Amer. Math. Soc., Providence, RI, 1995 | MR | Zbl

[17] Schwarz G., Hodge decomposition — a method for solving boundary value problems, Lecture Notes in Math., 1607, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl