On the derivative of the Minkowski question-mark function for numbers with bounded partial quotients
Algebra i analiz, Tome 34 (2022) no. 5, pp. 23-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that the derivative of the Minkowski function $?(x)$ may take only the values $0$ and $+\infty$ (provided it exists). Let $\mathbf{E}_n$ be the set of irrational numbers on the interval $[0; 1]$ whose contitued fraction expansion has all convergents of at most $n$. It is known also that the quantity $?'(x)$ at the point $x=[0;a_1,a_2,\ldots,a_t,\ldots]$ is related to the limit behavior of the arithmetic mean $(a_1+a_2+\ldots+a_t)/t$. In particular, as was shown by A. Dushistova, I. Kan, and N. Moshchevitin, if for $x\in \mathbf{E}_n$ we have $a_1+a_2+\ldots+a_t>(\kappa^{(n)}_1-\varepsilon) t$, where $\varepsilon>0$, and $\kappa^{(n)}_1$ is a certain explicit constant, then $?'(x)=+\infty$. They also showed that the quantity $\kappa^{(n)}_1$ cannot be replaced by a greater constant. In the present paper, a dual problem is treated, specifically, how small the quantity $a_1+a_2+\ldots+a_t-\kappa^{(n)}_1 t$ may be if it is known that $?'(x)=0$/ Optimal estimates in this problem are deduced.
Mots-clés : fraction, continuant
Keywords: Minkowski function.
@article{AA_2022_34_5_a1,
     author = {D. R. Gayfulin},
     title = {On the derivative of the {Minkowski} question-mark function for numbers with bounded partial quotients},
     journal = {Algebra i analiz},
     pages = {23--52},
     year = {2022},
     volume = {34},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_5_a1/}
}
TY  - JOUR
AU  - D. R. Gayfulin
TI  - On the derivative of the Minkowski question-mark function for numbers with bounded partial quotients
JO  - Algebra i analiz
PY  - 2022
SP  - 23
EP  - 52
VL  - 34
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_5_a1/
LA  - ru
ID  - AA_2022_34_5_a1
ER  - 
%0 Journal Article
%A D. R. Gayfulin
%T On the derivative of the Minkowski question-mark function for numbers with bounded partial quotients
%J Algebra i analiz
%D 2022
%P 23-52
%V 34
%N 5
%U http://geodesic.mathdoc.fr/item/AA_2022_34_5_a1/
%G ru
%F AA_2022_34_5_a1
D. R. Gayfulin. On the derivative of the Minkowski question-mark function for numbers with bounded partial quotients. Algebra i analiz, Tome 34 (2022) no. 5, pp. 23-52. http://geodesic.mathdoc.fr/item/AA_2022_34_5_a1/

[1] Gaifulin D. R., Kan I. D., “Proizvodnaya funktsii Minkovskogo”, Izv. RAN. Ser. mat., 85:4 (2021), 5–52 | MR

[2] Gaifulin D. R., Kan I. D., “Statsionarnye tochki funktsii Minkovskogo”, Mat. sb., 212:10 (2021), 3–15 | MR

[3] Gayfulin D., On the derivative of the Minkowski question-mark function, arXiv: 2107.00461 | MR

[4] Dushistova A. A., Kan I. D., Moshchevitin N. G., “Differentiability of the Minkowski question mark function”, J. Math. Anal. Appl., 401:2 (2013), 774–794 | DOI | MR | Zbl

[5] Dushistova A. A., Moschevitin N. G., “O proizvodnoi funktsii Minkovskogo $?(x)$”, Fundament. i prikl. mat., 16:6 (2010), 33–44

[6] Kan I. D., “Utochnenie pravila sravneniya kontinuantov”, Diskret. mat., 12:3 (2000), 72–75 | Zbl

[7] Kan I. D., “Metody polucheniya otsenok kontinuantov”, Fundament. i prikl. mat., 16:6 (2010), 95–108

[8] Minkowski H., “Zur Geometrie der Zahlen”, Internation. Math. Kongress (Geidelberg, 1904), 164–173 | MR | Zbl

[9] Paradis J., Viader P., Bibiloni L., “A new light on Minkowski's $?(x)$ function”, J. Number Theory., 73:2 (1998), 212–227 | DOI | MR | Zbl

[10] Paradis J., Viader P., Bibiloni L., “The derivative of Minkowski's $?(x)$ function”, J. Math. Anal. Appl., 253:1 (2001), 107–125 | DOI | MR | Zbl

[11] Salem R., “On some singular monotone functions which are strictly increasing”, Trans. Amer. Math. Soc., 53 (1943), 427–439 | DOI | MR | Zbl