Keywords: Minkowski function.
@article{AA_2022_34_5_a1,
author = {D. R. Gayfulin},
title = {On the derivative of the {Minkowski} question-mark function for numbers with bounded partial quotients},
journal = {Algebra i analiz},
pages = {23--52},
year = {2022},
volume = {34},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2022_34_5_a1/}
}
D. R. Gayfulin. On the derivative of the Minkowski question-mark function for numbers with bounded partial quotients. Algebra i analiz, Tome 34 (2022) no. 5, pp. 23-52. http://geodesic.mathdoc.fr/item/AA_2022_34_5_a1/
[1] Gaifulin D. R., Kan I. D., “Proizvodnaya funktsii Minkovskogo”, Izv. RAN. Ser. mat., 85:4 (2021), 5–52 | MR
[2] Gaifulin D. R., Kan I. D., “Statsionarnye tochki funktsii Minkovskogo”, Mat. sb., 212:10 (2021), 3–15 | MR
[3] Gayfulin D., On the derivative of the Minkowski question-mark function, arXiv: 2107.00461 | MR
[4] Dushistova A. A., Kan I. D., Moshchevitin N. G., “Differentiability of the Minkowski question mark function”, J. Math. Anal. Appl., 401:2 (2013), 774–794 | DOI | MR | Zbl
[5] Dushistova A. A., Moschevitin N. G., “O proizvodnoi funktsii Minkovskogo $?(x)$”, Fundament. i prikl. mat., 16:6 (2010), 33–44
[6] Kan I. D., “Utochnenie pravila sravneniya kontinuantov”, Diskret. mat., 12:3 (2000), 72–75 | Zbl
[7] Kan I. D., “Metody polucheniya otsenok kontinuantov”, Fundament. i prikl. mat., 16:6 (2010), 95–108
[8] Minkowski H., “Zur Geometrie der Zahlen”, Internation. Math. Kongress (Geidelberg, 1904), 164–173 | MR | Zbl
[9] Paradis J., Viader P., Bibiloni L., “A new light on Minkowski's $?(x)$ function”, J. Number Theory., 73:2 (1998), 212–227 | DOI | MR | Zbl
[10] Paradis J., Viader P., Bibiloni L., “The derivative of Minkowski's $?(x)$ function”, J. Math. Anal. Appl., 253:1 (2001), 107–125 | DOI | MR | Zbl
[11] Salem R., “On some singular monotone functions which are strictly increasing”, Trans. Amer. Math. Soc., 53 (1943), 427–439 | DOI | MR | Zbl