Torsion divisors of plane curves and Zariski pairs
Algebra i analiz, Tome 34 (2022) no. 5, pp. 1-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the study of the embedded topology of reducible plane curves having a smooth irreducible component. In previous studies, the relationship between the topology and certain torsion classes in the Picard group of degree zero of the smooth component was implicitly considered. Here this relationship is formulated clearly and a criterion is given for distinguishing the embedded topology in terms of torsion classes. Furthermore, a method is presented for systematically constructing examples of curves where this criterion is applicable, and new examples of Zariski $N$-tuples are produced.
Keywords: Plane curve arrangements, torsion divisors, splitting numbers, Zariski pairs.
@article{AA_2022_34_5_a0,
     author = {E. Artal Bartolo and Sh. Bannai and T. Shirane and H. Tokunaga},
     title = {Torsion divisors of plane curves and {Zariski} pairs},
     journal = {Algebra i analiz},
     pages = {1--22},
     year = {2022},
     volume = {34},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_5_a0/}
}
TY  - JOUR
AU  - E. Artal Bartolo
AU  - Sh. Bannai
AU  - T. Shirane
AU  - H. Tokunaga
TI  - Torsion divisors of plane curves and Zariski pairs
JO  - Algebra i analiz
PY  - 2022
SP  - 1
EP  - 22
VL  - 34
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_5_a0/
LA  - en
ID  - AA_2022_34_5_a0
ER  - 
%0 Journal Article
%A E. Artal Bartolo
%A Sh. Bannai
%A T. Shirane
%A H. Tokunaga
%T Torsion divisors of plane curves and Zariski pairs
%J Algebra i analiz
%D 2022
%P 1-22
%V 34
%N 5
%U http://geodesic.mathdoc.fr/item/AA_2022_34_5_a0/
%G en
%F AA_2022_34_5_a0
E. Artal Bartolo; Sh. Bannai; T. Shirane; H. Tokunaga. Torsion divisors of plane curves and Zariski pairs. Algebra i analiz, Tome 34 (2022) no. 5, pp. 1-22. http://geodesic.mathdoc.fr/item/AA_2022_34_5_a0/

[1] Artal Bartolo E., “Sur les couples de Zariski”, J. Algebraic Geom., 3:2 (1994), 223–247 | MR | Zbl

[2] Artal Bartolo E., Bannai S., Shirane T., Tokunaga H., “Torsion divisors of plane curves with maximal flexes and Zariski pairs”, Math. Nachr., 2020 (to appear) , arXiv: 2005.12673

[3] Artal Bartolo E., Carmona Ruber J., “Zariski pairs, fundamental groups and Alexander polynomials”, J. Math. Soc. Japan, 50:3 (1998), 521–543 | MR | Zbl

[4] Artal Bartolo E., Cogolludo-Agustin J. I., Martín-Morales J., “Triangular curves and cyclotomic Zariski tuples”, Collect. Math., 71:3 (2020), 427–441 | DOI | MR | Zbl

[5] Artal Bartolo E., Cogolludo-Agustin J. I., Tokunaga H., “A survey on Zariski pairs”, Algebraic geometry in East Asia–Hanoi (2005), Adv. Stud. Pure Math., 50, Math. Soc. Japan, Tokyo, 2008, 1–100 | MR | Zbl

[6] Artal Bartolo E., Florens V., Guerville-Ballé B., “A topological invariant of line arrangements”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 17:3 (2017), 949–968 | MR | Zbl

[7] Bannai S., “A note on splitting curves of plane quartics and multi-sections of rational elliptic surfaces”, Topology Appl., 202 (2016), 428–439 | DOI | MR | Zbl

[8] Bannai S., Guerville-Ballé B., Shirane T., Tokunaga H., “On the topology of arrangements of a cubic and its inflectional tangents”, Proc. Japan Acad. Ser. A Math. Sci., 93:6 (2017), 50–53 | DOI | MR | Zbl

[9] Bannai S., Ohno M., “Two-graphs and the embedded topology of smooth quartics and its bitangent lines”, Canad. Math. Bull., 63:4 (2020), 802–812 | DOI | MR | Zbl

[10] Bannai S., Tokunaga H., “Geometry of bisections of elliptic surfaces and Zariski $N$-plets for conic arrangements”, Geom. Dedicata, 178 (2015), 219–237 | DOI | MR | Zbl

[11] Bannai S., Tokunaga H., “Zariski tuples for a smooth cubic and its tangent lines”, Proc. Japan Acad. Ser. A Math. Sci., 96:2 (2020), 18–21 | DOI | MR | Zbl

[12] Degtyarëv A. I., “On deformations of singular plane sextics”, J. Algebraic Geom., 17:1 (2008), 101–135 | DOI | MR | Zbl

[13] Eyral C., Oka M., “Alexander-equivalent Zariski pairs of irreducible sextics”, J. Topol., 2:3 (2009), 423–441 | DOI | MR | Zbl

[14] Guerville-Ballé B., “An arithmetic Zariski $4$-tuple of twelve lines”, Geom. Topol., 20:1 (2016), 537–553 | DOI | MR | Zbl

[15] Guerville-Ballé B., Meilhan J.-B., “A linking invariant for algebraic curves”, Enseign. Math., 66:1–2 (2020), 63–81 | DOI | MR | Zbl

[16] Guerville-Ballé B., Shirane T., “Non-homotopicity of the linking set of algebraic plane curves”, J. Knot Theory Ramifications, 26:13 (2017), 1750089 | DOI | MR | Zbl

[17] Guerville-Ballé B., Viu J., “Configurations of points and topology of real line arrangements”, Math. Ann., 374:1–2 (2019), 1–35 | DOI | MR | Zbl

[18] Project Jupyter et al., “Binder $2.0$ — Reproducible, interactive, sharable environments for science at scale”, Proc. 17th Python Sci. Conf., 2018 ; https://mybinder.org | DOI

[19] Kleiman S., “The transversality of a general translate”, Compos. Math., 28 (1974), 287–297 | MR | Zbl

[20] Libgober A., “Alexander polynomial of plane algebraic curves and cyclic multiple planes”, Duke Math. J., 49:4 (1982), 833–851 | DOI | MR | Zbl

[21] Libgober A., “Characteristic varieties of algebraic curves”, Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001), NATO Sci. Ser. II Math. Phys. Chem., 36, Kluwer Acad. Publ., Dordrecht, 2001, 215–254 | MR | Zbl

[22] Namba M., Tsuchihashi H., “On the fundamental groups of Galois covering spaces of the projective plane”, Geom. Dedicata, 105 (2004), 85–105 | DOI | MR | Zbl

[23] Oka M., “Two transforms of plane curves and their fundamental groups”, J. Math. Sci. Univ. Tokyo, 3:2 (1996), 399–443 | MR | Zbl

[24] Rybnikov G. L., “O fundamentalnoi gruppe dopolneniya k kompleksnoi konfiguratsii giperploskostei”, Funkts. anal. i ego pril., 45:2 (2011), 71–85 | MR | Zbl

[25] Shimada I., “Equisingular families of plane curves with many connected components”, Vietnam J. Math., 31:2 (2003), 193–205 | MR | Zbl

[26] Shimada I., “Lattice Zariski $k$-ples of plane sextic curves and $Z$-splitting curves for double plane sextics”, Michigan Math. J., 59:3 (2010), 621–665 | DOI | MR | Zbl

[27] Shirane T., “A note on splitting numbers for Galois covers and $\pi_1$-equivalent Zariski $k$-plets”, Proc. Amer. Math. Soc., 145:3 (2017), 1009–1017 | DOI | MR | Zbl

[28] Shirane T., “Galois covers of graphs and embedded topology of plane curves”, Topology Appl., 257 (2019), 122–143 | DOI | MR | Zbl

[29] Stein W. A. et al., Sage mathematics software version $9.6$, The Sage Development Team, 2022 http://www.sagemath.org

[30] Tokunaga H., “On dihedral Galois coverings”, Can. J. Math., 46:6 (1994), 1299–1317 | DOI | MR | Zbl

[31] Tokunaga H., “Geometry of irreducible plane quartics and their quadratic residue conics”, J. Singul., 2 (2010), 170–190 | DOI | MR | Zbl

[32] Tokunaga H., “Sections of elliptic surfaces and Zariski pairs for conic-line arrangements via dihedral covers”, J. Math. Soc. Japan, 66:2 (2014), 613–640 | DOI | MR | Zbl

[33] Zariski O., “On the problem of existence of algebraic functions of two variables possessing a given branch curve”, Amer. J. Math., 51:2 (1929), 305–328 | DOI | MR | Zbl