Symbol length of classes in Milnor $K$-groups
Algebra i analiz, Tome 34 (2022) no. 4, pp. 214-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a field $F$, a positive integer $m$ and an integer $n\geq 2$, it is proved that the symbol length of classes in Milnor's $K$-groups $K_n F/2^m K_n F$ that are equivalent to single symbols under the embedding into $K_n F/2^{m+1} K_n F$ is at most $2^{n-1}$ under the assumption that $F \supseteq \mu_{2^{m+1}}$. Since $K_2 F/2^m K_2 F \cong {_{2^m}Br(F)}$ for $n=2$, this coincides with the upper bound of $2$ (proved by Tignol in $1983$) for the symbol length of central simple algebras of exponent $2^m$ that are Brauer equivalent to a single symbol algebra of degree $2^{m+1}$. The cases where the embedding into $K_n F/2^{m+1} K_n F$ is of symbol length $2$, $3$, and $4$ (the last when $n=2$) are also considered. The paper finishes with the study of the symbol length for classes in $K_3/3^m K_3 F$ whose embedding into $K_3 F/3^{m+1} K_3 F$ is one symbol when $F \supseteq \mu_{3^{m+1}}$.
Keywords: algebraic $K$-Theory, Milnor $K$-Theory, symmetric bilinear forms, quadratic forms, symbol length
Mots-clés : quaternion algebras.
@article{AA_2022_34_4_a6,
     author = {A. Chapman},
     title = {Symbol length of classes in {Milnor} $K$-groups},
     journal = {Algebra i analiz},
     pages = {214--221},
     year = {2022},
     volume = {34},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_4_a6/}
}
TY  - JOUR
AU  - A. Chapman
TI  - Symbol length of classes in Milnor $K$-groups
JO  - Algebra i analiz
PY  - 2022
SP  - 214
EP  - 221
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_4_a6/
LA  - en
ID  - AA_2022_34_4_a6
ER  - 
%0 Journal Article
%A A. Chapman
%T Symbol length of classes in Milnor $K$-groups
%J Algebra i analiz
%D 2022
%P 214-221
%V 34
%N 4
%U http://geodesic.mathdoc.fr/item/AA_2022_34_4_a6/
%G en
%F AA_2022_34_4_a6
A. Chapman. Symbol length of classes in Milnor $K$-groups. Algebra i analiz, Tome 34 (2022) no. 4, pp. 214-221. http://geodesic.mathdoc.fr/item/AA_2022_34_4_a6/

[1] Aravire R., Jacob B., O'Ryan M., “The de Rham Witt complex, cohomological kernels and $p^m$-extensions in characteristic $p$”, J. Pure Appl. Algebra, 222:12 (2018), 3891–3945 | DOI | MR | Zbl

[2] Elman R., Karpenko N., Merkurjev A., The algebraic and geometric theory of quadratic forms, Amer. Math. Soc. Colloq. Publ., 56, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[3] Gille P., Szamuely T., Central simple algebras and Galois cohomology, Cambridge Stud. Adv. Math., 101, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl

[4] Kato K., “Symmetric bilinear forms, quadratic forms and Milnor $K$-theory in characteristic two”, Invent. Math., 66:3 (1982), 493–510 | DOI | MR | Zbl

[5] Matzri E., “$\Bbb{Z}_3\times\Bbb{Z}_3$ crossed products”, J. Algebra, 418 (2014), 1–7 | DOI | MR | Zbl

[6] Merkurev A. S., Suslin A. A., “$K$-kogomologii mnogoobrazii Severi–Brauera i gomomorfizm normennogo vycheta”, Izv. AN SSSR. Ser. mat., 46:5 (1982), 1011–1046 | MR

[7] Orlov D., Vishik A., Voevodsky V., “An exact sequence for $K^M_\ast/2$ with applications to quadratic forms”, Ann. of Math. (2), 165:1 (2007), 1–13 | DOI | MR | Zbl

[8] Rost M., “The chain lemma for Kummer elements of degree $3$”, C. R. Acad. Sci. Paris Sér. I Math., 328:3 (1999), 185–190 | DOI | MR | Zbl

[9] Sivatski A. S., “The chain lemma for biquaternion algebras”, J. Algebra, 350:1 (2012), 170–173 | DOI | MR | Zbl

[10] Suslin A. A., “Algebraicheskaya K-teoriya i gomomorfizm normennogo vycheta”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 25, 1985, 115–207

[11] Tignol J.-P., “Cyclic algebras of small exponent”, Proc. Amer. Math. Soc., 89:4 (1983), 587–588 | DOI | MR | Zbl

[12] Voevodsky V., “Motivic cohomology with $\mathbf{Z}/2$-coefficients”, Publ. Math. Inst. Hautes Études Sci., 98, 2003, 59–104 | DOI | MR | Zbl

[13] Voevodsky V., “On motivic cohomology with $\left(\mathbb{Z}/l\right)$-coefficients”, Ann. of Math. (2), 174:1 (2011), 401–438 | DOI | MR | Zbl