Mots-clés : quaternion algebras.
@article{AA_2022_34_4_a6,
author = {A. Chapman},
title = {Symbol length of classes in {Milnor} $K$-groups},
journal = {Algebra i analiz},
pages = {214--221},
year = {2022},
volume = {34},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_2022_34_4_a6/}
}
A. Chapman. Symbol length of classes in Milnor $K$-groups. Algebra i analiz, Tome 34 (2022) no. 4, pp. 214-221. http://geodesic.mathdoc.fr/item/AA_2022_34_4_a6/
[1] Aravire R., Jacob B., O'Ryan M., “The de Rham Witt complex, cohomological kernels and $p^m$-extensions in characteristic $p$”, J. Pure Appl. Algebra, 222:12 (2018), 3891–3945 | DOI | MR | Zbl
[2] Elman R., Karpenko N., Merkurjev A., The algebraic and geometric theory of quadratic forms, Amer. Math. Soc. Colloq. Publ., 56, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl
[3] Gille P., Szamuely T., Central simple algebras and Galois cohomology, Cambridge Stud. Adv. Math., 101, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl
[4] Kato K., “Symmetric bilinear forms, quadratic forms and Milnor $K$-theory in characteristic two”, Invent. Math., 66:3 (1982), 493–510 | DOI | MR | Zbl
[5] Matzri E., “$\Bbb{Z}_3\times\Bbb{Z}_3$ crossed products”, J. Algebra, 418 (2014), 1–7 | DOI | MR | Zbl
[6] Merkurev A. S., Suslin A. A., “$K$-kogomologii mnogoobrazii Severi–Brauera i gomomorfizm normennogo vycheta”, Izv. AN SSSR. Ser. mat., 46:5 (1982), 1011–1046 | MR
[7] Orlov D., Vishik A., Voevodsky V., “An exact sequence for $K^M_\ast/2$ with applications to quadratic forms”, Ann. of Math. (2), 165:1 (2007), 1–13 | DOI | MR | Zbl
[8] Rost M., “The chain lemma for Kummer elements of degree $3$”, C. R. Acad. Sci. Paris Sér. I Math., 328:3 (1999), 185–190 | DOI | MR | Zbl
[9] Sivatski A. S., “The chain lemma for biquaternion algebras”, J. Algebra, 350:1 (2012), 170–173 | DOI | MR | Zbl
[10] Suslin A. A., “Algebraicheskaya K-teoriya i gomomorfizm normennogo vycheta”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 25, 1985, 115–207
[11] Tignol J.-P., “Cyclic algebras of small exponent”, Proc. Amer. Math. Soc., 89:4 (1983), 587–588 | DOI | MR | Zbl
[12] Voevodsky V., “Motivic cohomology with $\mathbf{Z}/2$-coefficients”, Publ. Math. Inst. Hautes Études Sci., 98, 2003, 59–104 | DOI | MR | Zbl
[13] Voevodsky V., “On motivic cohomology with $\left(\mathbb{Z}/l\right)$-coefficients”, Ann. of Math. (2), 174:1 (2011), 401–438 | DOI | MR | Zbl