General elementary solution of a homogeneous $q$-sided convolution type equation
Algebra i analiz, Tome 34 (2022) no. 4, pp. 188-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Exponential polynomials satisfying a homogeneous equation of convolution type are called its elementary solutions. The article considers convolution-type operators in the complex domain that generalize the well-known operators of $q$-sided convolution and $\pi$-convolution. The properties of such operators are investigated and the general form of elementary solutions (a general elementary solution) of a homogeneous equation of the type of $q$-sided convolution is described.
Keywords: homogeneous equations of convolution type, elementary solutions, general elementary solution.
@article{AA_2022_34_4_a5,
     author = {Yu. S. Saranchuk and A. B. Shishkin},
     title = {General elementary solution of a homogeneous $q$-sided convolution type equation},
     journal = {Algebra i analiz},
     pages = {188--213},
     year = {2022},
     volume = {34},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_4_a5/}
}
TY  - JOUR
AU  - Yu. S. Saranchuk
AU  - A. B. Shishkin
TI  - General elementary solution of a homogeneous $q$-sided convolution type equation
JO  - Algebra i analiz
PY  - 2022
SP  - 188
EP  - 213
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_4_a5/
LA  - ru
ID  - AA_2022_34_4_a5
ER  - 
%0 Journal Article
%A Yu. S. Saranchuk
%A A. B. Shishkin
%T General elementary solution of a homogeneous $q$-sided convolution type equation
%J Algebra i analiz
%D 2022
%P 188-213
%V 34
%N 4
%U http://geodesic.mathdoc.fr/item/AA_2022_34_4_a5/
%G ru
%F AA_2022_34_4_a5
Yu. S. Saranchuk; A. B. Shishkin. General elementary solution of a homogeneous $q$-sided convolution type equation. Algebra i analiz, Tome 34 (2022) no. 4, pp. 188-213. http://geodesic.mathdoc.fr/item/AA_2022_34_4_a5/

[1] Krasichkov-Ternovskii I. F., “Spektralnyi sintez v kompleksnoi oblasti dlya differentsialnogo operatora s postoyannymi koeffitsientami. I. Teorema dvoistvennosti”, Mat. sb., 182:11 (1991), 1559–1588

[2] Shishkin A. B., “O nepreryvnykh endomorfizmakh tselykh funktsii”, Mat. sb., 212:4 (2021), 131–158 | MR | Zbl

[3] Shishkin A. B., “Eksponentsialnyi sintez v yadre operatora simmetrichnoi svertki”, Zap. nauch. semin. POMI, 447, 2016, 129–170

[4] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. I. Spektralnyi sintez na vypuklykh oblastyakh”, Mat. sb., 87:4 (1972), 459–489

[5] Shishkin A. B., “Spektralnyi sintez dlya operatora, porozhdaemogo umnozheniem na stepen nezavisimoi peremennoi”, Mat. sb., 182:6 (1991), 828–848 | Zbl

[6] Krasichkov-Ternovskii I. F., “Spektralnyi sintez v kompleksnoi oblasti dlya differentsialnogo operatora s postoyannymi koeffitsientami. IV. Sintez”, Mat. sb., 183:8 (1992), 23–46

[7] Tatarkin A. A., Saranchuk U. S., “Elementary solutions of a homogeneous q-sided convolution equation”, Probl. Anal. Issues Anal., 7, Special Issue (2018), 137–152 | DOI | MR | Zbl

[8] Tatarkin A. A., Shishkin A. B., “Sintez v yadre operatora trekhstoronnei svertki”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 193, VINITI RAN, M., 2021, 130–141

[9] Shishkin A. B., “Symmetric representations of holomorphic functions”, Probl. Anal. Issues Anal., 7:2 (2018), 124–136 | DOI | MR | Zbl

[10] Gelfond A. O., Ischislenie konechnykh raznostei, Fizmatgiz, M., 1959 | MR

[11] Rashevskii P. K., “Opisanie zamknutykh invariantnykh podprostranstv v nekotorykh funktsionalnykh prostranstvakh”, Tr. Mosk. mat. o-va, 38, 1979, 139–185 | MR | Zbl

[12] Krasichkov-Ternovskii I. F., “Spektralnyi sintez i lokalnoe opisanie dlya mnogikh peremennykh”, Izv. RAN. Ser. mat., 63:4 (1999), 101–130 | MR | Zbl