Mots-clés : radiation conditions, elliptic extension.
@article{AA_2022_34_4_a4,
author = {B. A. Plamenevskii and A. S. Poretskii},
title = {The {Maxwell} system in nonhomogeneous anisotropic waveguides with slowly stabilizing characteristics of filling medium},
journal = {Algebra i analiz},
pages = {107--187},
year = {2022},
volume = {34},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2022_34_4_a4/}
}
TY - JOUR AU - B. A. Plamenevskii AU - A. S. Poretskii TI - The Maxwell system in nonhomogeneous anisotropic waveguides with slowly stabilizing characteristics of filling medium JO - Algebra i analiz PY - 2022 SP - 107 EP - 187 VL - 34 IS - 4 UR - http://geodesic.mathdoc.fr/item/AA_2022_34_4_a4/ LA - ru ID - AA_2022_34_4_a4 ER -
%0 Journal Article %A B. A. Plamenevskii %A A. S. Poretskii %T The Maxwell system in nonhomogeneous anisotropic waveguides with slowly stabilizing characteristics of filling medium %J Algebra i analiz %D 2022 %P 107-187 %V 34 %N 4 %U http://geodesic.mathdoc.fr/item/AA_2022_34_4_a4/ %G ru %F AA_2022_34_4_a4
B. A. Plamenevskii; A. S. Poretskii. The Maxwell system in nonhomogeneous anisotropic waveguides with slowly stabilizing characteristics of filling medium. Algebra i analiz, Tome 34 (2022) no. 4, pp. 107-187. http://geodesic.mathdoc.fr/item/AA_2022_34_4_a4/
[1] Plamenevskii B. A., Poretskii A. S., “Sistema Maksvella v volnovodakh s neskolkimi tsilindricheskimi vykhodami na beskonechnost i neodnorodnym anizotropnym zapolneniem”, Algebra i analiz, 29:2 (2017), 89–126
[2] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Uch. posob., Vyssh. shk., M., 1991
[3] Galishnikova T. N., Ilinskii A. S., Metod integralnykh uravnenii v zadachakh difraktsii voln, MAKS Press, M., 2013
[4] Bogolyubov A. N., Delitsyn A. L., Sveshnikov A. G., “O zadache vozbuzhdeniya volnovoda s neodnorodnym zapolneniem”, Zh. vychisl. mat. i mat. fiz., 39:11 (1999), 1869–1888 | MR | Zbl
[5] Bogolyubov A. N., Delitsyn A. L., Sveshnikov A. G., “Ob usloviyakh razreshimosti zadachi vozbuzhdeniya radiovolnovoda”, Dokl. AN SSSR, 370:4 (2000), 453–456 | MR
[6] Delitsyn A. L., “O postanovke kraevykh zadach dlya sistemy uravnenii Maksvella v tsilindre i ikh razreshimosti”, Izv. RAN. Ser. mat., 71:3 (2007), 61–112 | MR | Zbl
[7] Krasnushkin P. E., Moiseev E. I., “O vozbuzhdenii vynuzhdennykh kolebanii v sloistom radiovolnovode”, Dokl. AN SSSR, 264:5 (1982), 1123–1127 | MR
[8] Plamenevskii B. A., Poretskii A. S., “O sisteme Maksvella v volnovodakh s neskolkimi tsilindricheskimi vykhodami na beskonechnost”, Algebra i analiz, 25:1 (2013), 94–155
[9] Plamenevskii B. A., Poretskii A. S., “Izluchenie i rasseyanie v elektromagnitnykh volnovodakh vblizi porogov”, Algebra i analiz, 32:4 (2020), 234–270
[10] Plamenevskii B. A., Poretskii A. S., “O povedenii volnovodnykh matrits rasseyaniya v okrestnosti porogov”, Algebra i analiz, 30:2 (2018), 188–237
[11] Gudovich I. S., Krein S. G., Kraevye zadachi dlya pereopredelennykh sistem uravnenii v chastnykh proizvodnykh. Differentsialnye uravneniya i ikh primeneniya, Tr. semin., 9, In-t fiz. i mat. AN Lit. CCR, Vilnyus, 1974
[12] Birman M. Sh., Solomyak M. Z., “Samosopryazhennyi operator Maksvella v proizvolnykh oblastyakh”, Algebra i analiz, 1:1 (1989), 96–110
[13] Picard R., “On the low frequency asymptotics in electromagnetic theory”, J. Reine Angew. Math., 354 (1984), 50–73 | MR | Zbl
[14] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[15] Plamenevskii B., “On spectral properties of problems in domains with cylindrical ends”, Amer. Math. Soc. Transl. Ser. 2, 220 (2007), 123–139 ; Adv. Math. Sci., 59, Amer. Math. Soc., Providence, RI | MR | Zbl
[16] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI | Zbl
[17] Nazarov S. A., Plamenevskii B. A., “Samosopryazhennye zadachi s usloviyami izlucheniya na rebrakh granitsy”, Algebra i analiz, 4:3 (1992), 196–225 | Zbl
[18] Colton D., Kress R., Inverse acoustic and electromagnetic scattering theory, Appl. Math. Sci., 93, Third ed., Springer-Verlag, New York, 2013 | DOI | MR | Zbl
[19] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965
[20] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi mat. nauk, 19:3 (1964), 53–160 | MR
[21] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, 2-e izd., Lan, SPb, 2010
[22] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971
[23] Filonov N. D., “Operator Maksvella v tsilindre s koeffitsientami, ne zavisyaschimi ot poperechnykh peremennykh”, Algebra i analiz, 32:1 (2020), 187–207
[24] Edward J., “Eigenfunction decay and eigenvalue accumulation for the Laplacian on asymptotically perturbed waveguides”, J. London Math. Soc. (2), 59:2 (1999), 620–636 | DOI | MR | Zbl