@article{AA_2022_34_4_a2,
author = {P. B. Gvozdevskiy},
title = {Overgroups of subsystem subgroups in exceptional groups: inside a sandwich},
journal = {Algebra i analiz},
pages = {47--73},
year = {2022},
volume = {34},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2022_34_4_a2/}
}
P. B. Gvozdevskiy. Overgroups of subsystem subgroups in exceptional groups: inside a sandwich. Algebra i analiz, Tome 34 (2022) no. 4, pp. 47-73. http://geodesic.mathdoc.fr/item/AA_2022_34_4_a2/
[1] Borevich Z. I., Vavilov N. A., “Podgruppy polnoi lineinoi gruppy nad polulokalnym koltsom, soderzhaschie gruppu diagonalnykh matrits”, Tr. Mat. in-ta RAN, 148, 1978, 43–57 | Zbl
[2] Borevich Z. I., Vavilov N. A., “Raspolozhenie podgrupp v polnoi lineinoi gruppe nad kommutativnym koltsom”, Tr. Mat. in-ta RAN, 165, 1984, 24–42 | MR
[3] Burbaki N., Gruppy i algebry Li. Gl. 4–6, Mir, M., 1972 | MR
[4] Vavilov N. A., “O podgruppakh rasschepimykh ortogonalnykh grupp nad koltsom”, Sib. mat. zh., 29:4 (1988), 537–547 | MR | Zbl
[5] Vavilov N. A., “O podgruppakh rasschepimykh klassicheskikh grupp”, Tr. Mat. in-ta RAN, 183, 1990, 29–42 | Zbl
[6] Vavilov N. A., Plotkin E. B., “Setevye podgruppy grupp Shevalle. II. Razlozhenie Gaussa”, Zap. nauch. semin. LOMI, 114, 1982, 62–76 | Zbl
[7] Vavilov N. A., Stepanov A. V., “Nadgruppy poluprostykh grupp”, Vestn. SamGU. Estestvennonauchn. ser., 2008, no. 3, 51–95 | MR | Zbl
[8] Vavilov N. A., Schegolev A. V., “Nadgruppy subsystem subgroups v isklyuchitelnykh gruppakh: urovni”, Zap. nauch. semin. POMI, 400, 2012, 70–126
[9] Gvozdevskii P. B., “Nadgruppy podgrupp Levi I. Sluchai abeleva unipotentnogo radikala”, Algebra i analiz, 31:6 (2019), 79–121 | MR
[10] Gvozdevskii P. B., “Nadgruppy podsistemnykh podgrupp v isklyuchitelnykh gruppakh: $2A _1$-dokazatelstvo”, Algebra i analiz, 32:6 (2020), 72–100 | MR
[11] Kopeiko V. I., “Stabilizatsiya simplekticheskikh grupp nad koltsom mnogochlenov”, Mat. sb., 106:1 (1978), 94–107 | MR | Zbl
[12] Khamfris Dzh., Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003
[13] Schegolev A. V., “Nadgruppy blochno-diagonalnykh podgrupp giperbolicheskoi unitarnoi gruppy nad kvazi-konechnym koltsom: Osnovnye rezultaty”, Zap. nauch. semin. POMI, 443, 2016, 222–233
[14] Schegolev A. V., “Nadgruppy elementarnoi blochno-diagonalnoi podgruppy klassicheskoi simplekticheskoi gruppy nad proizvolnym kommutativnym koltsom”, Algebra i analiz, 30:6 (2018), 147–199
[15] Abe E., Suzuki K., “On normal subgroups of Chevalley groups over commutative rings”, Tohoku Math. J., 28:2 (1976), 185–198 | DOI | MR | Zbl
[16] Bak A., “Nonabelian K-theory: The nilpotent class of $\mathrm{K}_{1}$ and general stability”, K-Theory, 4 (1991), 363–397 | DOI | MR | Zbl
[17] Cohn P. M., “On the structure of the $\mathrm{GL}_2$ of a ring”, Inst. Hautes Études Sci. Publ. Math., 30 (1966), 5–53 | DOI | MR
[18] Hazrat R., Vavilov N., “$K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179:1-2 (2003), 99–116 | DOI | MR | Zbl
[19] Roozemond D. A., Algorithms for Lie algebras of algebraic groups, Ph.D. thesis, Technische Univ., Eindhoven, 2010 | MR
[20] Shchegolev A., Overgroups of elementary block-diagonal subgroups in even unitary groups over quasi-finite rings, Ph.D. thesis, Fak. Math. Univ., Bielefeld, 2015
[21] Stepanov A. V., “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | MR | Zbl
[22] Stepanov A. V., Vavilov N. A., “Decomposition of transvections: Theme with variations”, K-Theory, 19:2 (2000), 109–153 | DOI | MR | Zbl
[23] Taddei G., Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau, Applications of algebraic $K$-theory to algebraic geometry and number theory (Boulder, Colo, 1983), v. I, II, Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986, 693–710 | DOI | MR
[24] Vaserstein L. N., “On normal subgroups of Chevalley groups over commutative rings”, Tohoku Math. J., 38:2 (1986), 219–230 | DOI | MR | Zbl
[25] Vavilov N. A., “Intermediate subgroups in Chevalley groups”, Groups of Lie type and their geometries (Como, 1993), London Math. Soc. Lecture Note Ser., 207, Cambridge Univ. Press, Cambridge, 1995, 233–280 | MR | Zbl